D-A136 795 AUTOMARTED EN ROUTE AIR TRAFFIC CONTROL ALGORITHHIC
SPECIFICATIONS YOLUME 3. . (U) FEDERAL AVIATION

ADMINISTRATION WASHINGTON DC SYSTEMS ENGINE

UNCLRSSIFIED K P NIEDRINGHAUS ET AL. SEP 83

——

E.
F/G 1777

1/2

NL

RO A R A A P R A i et A R e Ao o

-,.1

e RAH

g

b .:s‘.-‘\’»‘-‘

E

EEEE
=
N

- " o

FreeEFEEE
=
N
s

O
©

':;

s s

P

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

bo s,
o
-
2

. n
LA

A Y
)

»

a2
3]
;

1§

,' g
‘:As.A

x |%

v
-,

|

-

NN

I
T e, N e .
Aloa' n’ e nnl o

O

AT, /)

AR]

Yy A

?:&;.a».- -

st

bt

L T W i M, W, © g &= - EWd U WV, « Vs St St Tl B il it C Rt LAw= e~ Sat dhr At A L T

e

woeomer Automated En Route Air Traffic Control

Admiristrotion Algorithmic Specifications

Oftics of Systems
Enginesring Manegement
Washington, D.C. 20891

FLIGHT PLAN CONFLICT PROBE

A1367935

Volume 3
DTIC
o
JAN 1 31984
s W
& -
Ly
—
[Py
~ September 1983
fReport No. DOT/FAA/ES-83/6
D
T e e " ™ BISTRRT St
Netions! Technical Information Service, Approved - m," i ‘*‘%—7
Springtield, Virginia 22161 . Dlsmbut.ol 0 I e
\\ e

f'.‘r ‘.v‘.v ..v '.Tl'_v-._ .1‘v.1*_ R ."‘- N .‘-v..‘.';“)' t R ".';‘q Adiir i e _'a _'r"'_"'ir._v s, ..'. . v hand T e |

‘ Tochnice! Keport Documentetion Poge
‘3;'.) mmn Ne. 3. Recipiont's Cotoiog Ne.

: 2. Ge A Nog”
S DOT/FAA/ES-83/6 4 | 5& 775

N I T Yiie ond Sbvivie T Ropori Boe

\ . Automated En Route Air Traffic Control . H—peptenber 1983 °

N Algorithmic Spegifications 6. Porforming Orgonisation Code
N FLIGHT PLAN CONFLICT PROBE Volume 3 AES=320

e . 0. Porlorming Orgenizetion Report Ne.
> 7. Avheds) 'y P. Niedringhaus, I. Frolow, J.C. Corbin,

FAA-ES-83-6
10. Werk Unit No. (TRAIS)

A.H. Gisch, N.J, Tgber, F . H, Leiber
9. Poclorming Orgenizetion Name and Addrocs .

S Systems Engineering Service

bk Department of Transpotation 1. Centract or Gront Ne.
" Federal Aviaton Administration |
3o] Independence Ave,, S.W., Washington, D.C. 20591 J'3 Tree of Repert and Peried Covered
i " 12. Spensering Agency Newe and Adédrese o
sl Same as #9 above.
o~ 14" Sponsering Agency Code |
L:f' . AES
S 15. Supplementery Notes |
- ' A
\._\
~ o
N 16, Absivect
:3: This Algorithmic Specification establishes the design criteria for four advanced
;' automation software functions to be included in the initial software package of
7 the Advanced Automation System (AAS). The need for each function is discussed
e within the context of existing National Airspace System (NAS). A top-
5\ down definition of each function is provided with descriptions on increasingly
;ﬁ more detailed levels. The final, most detailed description of each function
5? identifies the data flows and transformations taking place within each function.
M5

This document consists of five volumes.. Volume 3, Flight Plan Conflict Probe, \
contains a functional design for use of trajectory data to predict violations of,
separation criteria between aircraft. .

IUﬂ,
‘.L

s
LALIR

ox The other four volumes of this specification provide design criteria for the

b" following:

O o Volume 1, Trajectory Estimaiton

_Ef o Volume 2, Airspace Probe

ZE; s . o Volume 4, Sector Workload Probe

Ay o Volume 5, Data Specification

:':3 17. Kov Words . . 18, Distibution Stetement . » |
:\: Automation, Air Traffic Control, Auto-] Document is available to the U.S. public |
{} mated Decision Making, En Route Traffi¢ through the National Technical Informa- [
o Control, Artificial Intelligence, tion Service, Springfield, VA 22161

== Advanced Automation System ‘
\.':-, 19. Security Clessil. (of this report, 2. Security Classil. (of this pege) 21. Ne. of Poges | 22. Price :
-: : . |
" Unclassified Unclassificd

"‘;'; Form DOT F 1700.7 -2 Repreduction of completed poge euthorized ;

]

PR

LRERCH

EXECUTIVE SUMMARY ;i

This specification establishes design criteria for the Flight Plan
Conflict Probe (FPCP), a part of the initial automation for the
Advanced Automation System of the FAA's next generation air traffic
control system. The algorithm provides data for a display to air
traffic controllers whenever any two aircraft are predicted to
. approach each other within certain separation criteria in the hori-
zontal and vertical dimensions. Such a pair of aircraft is called a

conflict.
))L Trajectory Estimation, another function of the Advanced Automation

System, models the predicted position of each aircraft as a trajec-
» tory, consisting of points in (x,y,z,t) space and the line segments
connecting them. Trajectories reflect both pilot 1intent (his
approved flight plan) and curreant position (radar reports). FPCP
automatically tests all trajectory pairs for conflicts.

FRAIr

2’e%874"2"9°4

FPCP is designed to be compatible with curreat air traffic control
procedures. It displays information early enough for controllers to
) resolve conflicts in a deliberate fashion. It alerts the controller
k- vwhen prompt action is deemed necessary to resolve a conflict. —
FPCP determines conflicts by using several separate processes.
First, a grid is established to partition the planning region into
cells defined in the horizontal and time dimensions. Those cells in
the grid through which the trajectory passes are identified and
designated as the aircraft's grid chain. The grid chains for all
aircraft previously processed by the algorithm are maintained in one
data structure. Second, a preliminary or coarse filter compares the
N grid chain of a specific aircraft to the grid chains of all other
5 aircraft; the aircraft pairs which do not have common cells in their
grid chains, and hence are separated by large horizontal distances,
are eliminated from further consideration. Third, the remaining
pairs are tested to determine 1if their altitude ranges overlap
within the co-occupied cells. For those that do, a final filter
N analyzes the appropriate segments of the aircraft trajectories asso-
. ciated with the common grid cells. The segments are first checked
to see if they overlap in time and violate vertical separation
I criteria within the common time interval. Those that do are tested
a for violation of horizontal separation criteria. Information on . -
- those segments which violate all of these criteria is maintained and Eéz;—‘

N]

P TN, A
)4

displayed to the controller at the appropriate time. I
¥ a
: Some data determined by Flight Plan Conflict Probe are stored in the m— [
j data base for access by Sector Workload Probe. "“—-———~—4:

_Distributiony

. ii
“

)

__Avallability codes

1Avyj] and/op
| Special

TABLE OF CONTENTS

P
4

Page
1. INTRODUCTION 1-1
1.1 Purpose 1-1
1.2 Scope 1-1
1.3 Organization of this Document . 1-2
1.4 Role of Flight Plan Conflict Probe in the Overall
ATC System 1-3
1.4.1 System Context 1-3
. 1.4.2 Effect of Future AAS Enhancements on Flight Plan
k- Conflict Probe 1-7
;; 1.5 Flight Plan Conflict Probe Summary 1-8
X 1.5.1 Operational Description 1-8
15 1.5.2 Processing Overview 1-9
N 2. DEFINITIONS AND DESIGN CONSIDERATIONS 2-1
A
W 2.1 System Design Definitions 2-1
) 2.1.1 Resynchronization 2-1
% 2.1.2 Time Horizon, Delta Horizon, and Horizon Update 2-1
» 2.1.3 FPCP Trajectory Update 2-2
s 2.1.4 Segments, Cusps, and Segment Chains 2-2
: 2.1.5 Holding Patterns and Maneuver Envelopes 2-2
2.1.6 Airspace Grid and Its Cells 2-4
2.1.7 Cell Occupancy, Grid Chains, and Buffer Cells 2~6
N 2.1.8 The Sparse Subject Tree, Buffer Subject Tree,
*y and Allobject Tree 2-7
! 2.1.9 Nominees and the Coarse Filter _ 2-11
» 2.1.10 Encounters and the Fine Filter 2-11
_ 2.1.11 Advisory and Priority Terminology 2-13
3
§ 2.2 Design Considerations 2-16
ﬁ 2.2.1 Minimal Required Controller Knowledge of
Algorithas 2-16
2.2.2 Display Format 2-16
: 2.2.3 Considerations Involving Uncertainties in
- Aircraft Position 2-16
N 2.2.4 Separation Criteria 2-17
z 2.2.5 1Initiating the Display of FPCP Information 2-19
»
. iij
~ .
N
“ o

2 G O e S O N R SN T i I L OOt L O e NN

TABLE OF CONTENTS
(continued)

«6 FPCP, Sector Workload Probe, and the Airspace
Grid

7 Boundary Considerations

-8 Controller Interface

FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN
3.1 Enviromment

«l¢l Input Data and Activation
«l.2 Output Data

2 Design Assumptions
«3 Subfunctions

3.1 The Grid Chain Generator
3.2 The Coarse Filter

3.3 The Fine Filter

3.4 Maintenance

WWwww

DETAILED DESCRIPTION

4.1 Grid Chain Generator

4.1.1 Sparse Cell Generator
4.1.2 Buffer Cell Generator
4.1.3 Grid To Tree Converter
4.2 Coarse Filter

4.2.1 Nominee Detection

4.3 Fine Filter

4.3.1 Segment Pair Builder
4.3.2 Time Check

4.3.3 Altitude Check

4.3.4 Horizontal Check

4.3.5 Encounter List Builder
4.4 Maintenance

iv

2-20
2-20
2-21

3-1

3-1
3-3

3-3
3-4

3-4
3-7
3-8
3-9
4-1
4~1
4-3
4-25
4-28
4-29
4-31
4-35
4-39
4~46
4=49
4-53
4-85

4-91

A

TABLE OF CONTENTS
(concluded)

4.,4.1 Delete Afrcraft
4.4.2 Insert Alrcraft

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:

FLIGHT PLAN CONFLICT PROBE DATA
MATHEMATICAL DERIVATION OF FORMULAS

TREE TRAVERSAL TECHNIQUES USED BY THE
COARSE FILTER AND MAINTENANCE

GLOSSARY
AERA PDL LANGUAGE REFERENCE SUMMARY

REFPERENCES

Page

4-94
4-98

A-1

B-1

D-1
E-1

F-1

camf. ;b MR

x

. . hm e A M A A oA A A emmeAr £ o . <.

PR S W |

...........

LIST OF ILLUSTRATIONS

Ol
.5 Page
SRy
-2 TABLE 4-1: SPARSE CELL LIST FOR FIGURE 3-2 4-18

FIGURE 2-1: THE SEGMENT CHAIN AND GRID CHAIN FOR A

’
oty %u

o TRAJECTORY , 2-3
oo FIGURE 2-2: GEOMETRIC STRUCTURES ENCLOSING TYPICAL HOLDING
Y PATTERNS 2-5
y FIGURE 2-3: AIRSPACE GRID IN THREE DIMENSIONS 2-9 .
FIGURE 2-4: TREE REPRESENTATION OF THE AIRSPACE GRID IN TWO
DIMENSIONS 2-10
N FIGURE 2-5: ILLUSTRATION OF TREE WITH EARLY DIVISION ON T
;N ONLY: LATER DIVISION ON X,Y,T 2-12
2P FIGURE 2-6: RELATIONSHIP BETWEEN ADVISORY AND PRIORITY
h 'y SEPARATION CRITERIA 2-14
FIGURE 2-7: CRITICAL TIMES ASSOCIATED WITH ADVISORY AND
o PRIORITY VIOLATIONS 2-15
e FIGURE 2-8: UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER
o ENVELOPES 2-18
d ,.\'
o~ FIGURE 3-1: FPCP ORGANIZATIONAL STRUCTURE 3-2
FIGURE 3~2: SPARSE AND BUFFER CELLS ASSOCIATED WITH A
o TRAJECTORY 3-6
)
oo FIGURE 4~1: GRID CHAIN GENERATOR ORGANIZATIONAL STRUCTURE 4=2
N FIGURE 4-2: SPARSE_CELL_GENERATOR 4=5
FIGURE 4-3: CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS 4-8
FIGURE 4~4: CELL OCCUPANCIES USING INCORRECT INDEPENDENT
. AXIS 4-9
. FIGURE 4-5: DETERMINE_INDEPENDENT VARIABLE 4-11
. FIGURE 4-6: STRAIGHT_LINE_GENERATOR 4-13
FIGURE 4-7: AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID
" CELL COORDINATES TO A TREE NODE IDENTIFIER 4-16
' FIGURE 4-8: VERTICAL_ PROTECT 4-19)
L FIGURE 4-9: HOLD_AREA PROTECT 4-22
o) FIGURE 4-10: OCCUPIED CELLS FOR A HOLDING PATTERN 4=24
o) FIGURE 4-11: BUFFER_CELL_GENERATOR 4=26
L FIGURE 4-12: GRID _TO TREE CONVERTER 4-30
2 FIGURE 4-13: COARSE FILTER ORGANIZATIONAL STRUCTURE 4=32
i} FIGURE 4-14: NOMINEE DETECTION 4~36
e FIGURE 4-15: NOMINEE DETECTION ALTITUDE TEST 4-38
27 FIGURE 4-16: FINE FILTER ORGANIZATIONAL STRUCTURE 4~40
- FIGURE 4~17: FINE FILTER GLOSSARY 4=41
2% FIGURE 4-18: FINE_FILTER 4-44
e vi
~;
:3 :
A4
"'.)
“u
:; 4
L, P I N P T o S R W S S}

-t oW . om oaLT & I P N N S T S e et M MM N e e et - B T T N R
") 'ﬁ \'-\.\-) .f..l'\\\ -..\ . A o e T e e e e e e e T IR R SR URICTL IR A T . ~.‘. “

¥ '} '. -----------------

RIS
B

|

: ..t.‘,‘- ey Y,

4

my Y, 1%y Vg yvigd
. ot
ROV A P A

PIGURE 4-19:
FIGURE 4-20:
FIGURE 4-21:
FIGURE 4-22:
FIGURE 4-23:
FIGURE 4-24:
PIGURE 4-25:
FIGURE 4-26:
FIGURE 4-27:
FIGURE 4-28:

FIGURE 4-29:

FIGURE 4-30:
FIGURE 4-3l:
FIGURE 4-32:
FIGURE 4-33:
FPIGURE 4-34:
FIGURE 4-35:
FIGURE 4-36:
FIGURE 4-37:
FIGURE 4-38:
FIGURE 4-39:
FIGURE 4-40:
PIGURE 4-41:
FIGURE 4-42:
FIGURE 4-43:
FIGURE 4-44:

.................................

LIST OF ILLUSTRATIONS
(Concluded)

SEGMENT_PAIR_BUILDER

TIME_CHECK

ALTITUDE_CHECK

HORIZONTAL_CHECK

DEKIVATION OF TIME OF MINIMUM SEPARATION
REGULAR_SEGMENT HORIZONTAL CHECK
RELATIVE_VECTORS

VIOLATION TIMES

MANEUVER _ENVELOPE_HORIZONTAL_CHECK

CASES WHERE THE HOLDING PATTERN HORIZONTAL
CHECK IS INVOKED

EXAMPLE OF HORIZONTAL CHECK FOR A VERTICAL
MANEUVER

MANEUVER ENVELOPE_TEST
ENVELOPE_ENVELOPE_VIOLATION CHECK
GET_BOX
ENVELOPE_ENVELOPE_INTERSECT_CHECK
EDGE_CONTAINMENT CHECK

SEGMENT ENVELOPE_VIOLATION CHECK
SEGMENT ENVELOPE_ INTERSECT CHECK
ENCOUNTER LIST BUILDER

VIOLATION BOUNDARIES

PREFIX_MERGE

SUFFIX_MERGE

MAINTENANCE ORGANIZATIONAL STRUCTURE
DELETE_AIRCRAFT

DELETE_SUBTREE

INSERT _AIRCRAFT

vii

..........................

. -

Page

4=47
4-50
4-52
4-55
4-57
4-58
4-61
4-64
4-66

. -

4-68

4-69
4-71
4-73
4-76
4=77
4-78
6-81
4-83
4-87
4-90
4=92
4-93
4=95
4=97
4=99
4~-101

o el o SR i it il

A

Shdhid ndot ola ol b asus

K

'''''''

-

&

vy

*

. -
.

h

vy

o
v %
. g

ALY

i B

A

Ay

X33

2

R

2

1. INTRODUCTION

oo The Federal Aviation Administration (FAA) 1s currently in the

o process of developing a new computer system, called the Ad-

o vanced Automation System (AAS), to help control the nation's

[air traffic. The AAS will consist of new or enhanced hardware

D (i.e., Central Processing Units, memories, and terminals) and
new software.

3 The new software will retaim most or all of the functions in

g the existing National Airspace System (NAS) En Route Stage A

L o software. The algorithms will need to be recoded and, in some

. cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities

“ 7 of automation for Air Traffic Control (ATC). When fully imple-

- mented, these new functions are intended to detect and resolve

» many routine ATC problems.

R The initial implementation of the AAS, described in the AAS

. Specification [1], will provide the ability to detect some com—

:’}; mon ATC problems. To meet the requirements of the AAS, several

\ new ATC functions need to be postulated and described. Four of

a5 these functions are described in this document: Trajectory

o Estimation, Flight Plan Conflict Probe, Airspace Probe, and

T Sector Workload Probe [Volumes 1, 2, 3, and 4]). Together, they

A represent an initial level of automation and the beginnings of

o the evolution of the ATC system in accordance with the NAS Plan

N3 [2]. The NAS Plan presents an overview of the complete set of

:“-;l. changes proposed to NAS in the coming decade.

Y l.1 Purpose

Iy The purpose of this volume is to identify design criteria for

E-.: Flight Plan Conflict Probe (FPCP). FPCP is one of the advanced

AN automation functions called for in the AAS Specification.

ue, These design criteria specified in this volume are based on the

existing National Airspace System (NAS) and the specification

- of the AAS. The AAS specification describes the Flight Plan

T Conflict Probe function and proposes some high level require-

k- ments for this functiom.

.'_\ . 1.2 Scope

_ This algorithmic specification presents design criteria for a

- computational framework of Flight Plan Conflict Probe. The

L framework is a set of algorithms which collectively describe

X how it may be possible to detect aircraft that are in danger of

} violating certain separation standards. It may be viewed as a

7 1-1

s::

1o

3

2

candidate for consideration in the final design. However, it
is not intended to be the complete final design of FPCP in the
AAS.

The framework establishes the requirements for input and output
data and provides a description of the flow of control of data
as it is transferred from input to output. Some of the prin-
cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [3]. To the extent pos-
sible, the data are discussed using existing NAS terminology.

1.3 Organization of This Document

The remainder of Section 1 provides a description of Flight
Plan Conflict Probe's role in the larger ATC context and in
future enhancements of the ATC system. Both the operational
considerations and processing methods of FPCP are summarized.
Section 2 defines the terminology used in the specification and
dilg:su the factors which influence the design of the algo-
rithms.

Descriptions of the algorithms are contained in Section 3,
Flight Plan Conflict Probe Functional Design, and in Section 4,
Detailed Description. The Flight Plan Conflict Probe Function,
like the other advanced automation functions, is divided hier-

archically 1into subfunctions, components and elements

(underlined words in Sections 1 and 2 are critical to the
understanding of this specification and can be found in the
Glossary, Appendix D). Section 3 specifies the design, envi-
ronment, and assumptions of the subfunctions (e.g., the Fine
Filter), and outlines their components (e.g., Horizontal
Check). Section 4 provides a detailed description of each sub-
function's components, including their mission, data
requirements, and some processing details, and in some cases
includes a discussion of a component's elements (e.g., Maneuver
Envelope Horizontal Check).

Appendix A defines the data shared by the various subfunctions
of FPCP. (Similarly, Volume 5 of this document contains the
global data shared by the functions defined in Volumes 1
through 4). Appendix B provides mathematical derivations of
certain formulas used in this specification. Supplementary
information on "trees,” the data structure used by the Coarse

Filter, one of the subfunctions of FPCP, follows in Appendix
C. Appendix D, as mentioned above, contains a glossary of
those terms that are critical to an understanding of this
specification.

1-2

.............

........

AP ISP B 0 DR, S

ol % N,

A Program Design Language (PDL) which describes high level con-
trol 1logic using structured English 1s used as needed to
describe the algorithms in this specification. A description
of this PDL 1s contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Flight Plan Conflict Probe in the Overall ATC
stten

This section discusses some features of the current ATC system,
describes the role of FPCP in the Advanced Automation System,
and discusses changes to FPCP that may be appropriate when en-
hancements to the AAS are introduced.

l.4.1 System Context

The Continental United States airspace is partitioned among 20
Alr Route Traffic Control Centers (ARTCCs) or centers, which
control regions bounded horizontally by polygons and stretching
vertically from the center floor to 60,000 ft. Each center's
airspace 1is further divided into areas, which are in turn
divided into sectors. Areas and sectors are polygonal regions
with floors (located at specified altitudes or the ground) and
ceilings. The sectors of each area are staffed by a group of
air traffic controllers (or controllers) specially trained for

that area; the area supervisor 1s the first line supervisor o
an area.

In the current ATC System, pilots determine the desired means
to reach their destination consistent with current navigational
and ATC practices. This intent is then filed with the ATC Sys-
tem as a flight plan (which may be approved by ATC as filed or
modified by ATcg. Alternatively, flight plans that are exe-~
cuted daily or on a regularly scheduled basis reside in a data
base and are filed automatically unless altered or suspended.
A flight plan modification may be initiated at any time before
or during the flight by a controller or the pilot and must be
approved by the controller and the pilot.

Controllers are responsible for monitoring the flights which
pass through their sectors and for helping pilots achieve their
objectives. They watch a set of symbols representing the air-
craft's radar track position as it moves across a plan view
display; the aircraft's identity, altitude, and other informa-
tion are also displayed. Controllers institute control actions
as needed, to perform such functions as separation assurance,
honoring pilot requests for new routes, rerouting flights to

1-3

T T Y Y S T Y T T R e VI e e T T _-"'_v'_---l

avoid special use airspaces or severe weather, or queueing

aircraft into major terminal areas.

Separation assurance services provided by the current system
are described in the FAA's document "Air Traffic Control™ [4].
Separation is provided in one of the three dimensions relative
to aircraft movement: vertical, lateral, or longitudinal.
Separation in any one of these dimensions is sufficient. Ver-
tical separation uses pilot reports of altitude supplemented by
barometric data (Mode C reports). . Aircraft in level flight may
be assigned to specific flight levels, which are designated
altitudes (separated by 2000 teet at high altitudes). Level
aircraft occupying different flight levels have vertical sepa-
ration. The controller may provide vertical separation for an
o aircraft that 1s maneuvering vertically by 1issuing altitude
- restrictions, which direct the pilot to be at, at or above, or
hn at or below a specified altitude at a given point along its
. flight path. lateral separation applies to aircraft flying on
different routes whose airway widths or protected airspace do
not overlap. When routes do overlap, the controller may pro-
- vide loEgitudinal separation to assure that the two aircraft
SN reach the region of overlap at two different times or that the
N aircraft are separated by a specific distance.

The plans of the FAA for the evolution of Air Traffic Control
are discussed in "Advanced Automation System, System Level
- Specification” [1], and in “National Airspace System Plan
3 (NASP): Facilities, Equipment and Associated Development”
o [2). According to the NASP, the "early capabilities [of auto-

-y mated Air Traffic Control] will include flight path conflict
" probe which predicts future aircraft trajectories and examines
[them] for potential violation of separation standards.”
According to the AAS, Flight Plan Conflict Probe is performed
"on request or when an amendment is made to am active flight
plan.”

1.4.1.1 Flight Plan Conflict Probe and AERA

The advanced automation functions for the ATC System are part
of an automated system referred to as AERA ("Automated En Route
Alr Traffic Control”). AERA is to be implemented in several
stages, as outlined in "Evolution of Advanced ATC Automation
Functions” [5]. Flight Plan Conflict Probe will be implemented
as part of the first stage, known as AERA 1 (which 1is further
. sub-divided into AFRA 1.01 and AERA 1.02). Operational des-
ANK criptions of the advanced automation functions of AERA 1.01 are
iy %1yen in "Operational and Functional Description of AERA 1.01"
3 ®

1-4

‘‘‘‘‘‘‘‘‘
................
.................

hay?
.
Ly

o
R ‘h—‘."- "t

ey
Yy

A
Pl B B

g

8, ':'J"

..............

Several other functions of the AAS are related to or interface
with Flight Plan Conflict Probe. The Trajectory Estimation
function [Volume 1] models the paths of aircraft through space
and time for use by other functions including Flight Plan Con-
flict Probe, These paths are called trajectories. The
Alrgpace Probe function [Volume 2] provides information to air
traffic controllers on predicted aircraft violations of
restricted and warning aress, military operations areas, areas
with terrain obstructions, and special use airspaces. Airspace
Probe and Flight Plan Conflict Probe may share some data. The
controller may invoke these two functions in tandem when eval-
uating a proposed routing of an aircraft. Some outputs of FPCP
(and of Airspace Probe) are used by the Sector Workload Probe
[Volume 4}, which provides information to ATC supervisory per-
sonnel on measures related to workload in orier to assist them
in waking decisions on sector staffing and . n the amount of
airspace currently defining the sectors. The common data used
by the specifications are described and their relationships are
identified in "Data Specification” [Volume 5].

1.4.1.2 FPCP and Other Functions Concerned With Aircraft
Separation

The following paragraphs describe three functions or systems
which are quite diverse in purpose, source of input data, and
look-ahead time, but which share with FPCP the objective of
outputting messages whenever certain traffic-related criteria
are met. The subsequent section (Section 1.4.1.3) discusses
how FPCP satisfies needs not met by the other three systeas.

En Route Sector Loading

En Route Sector Loading (ELOD) is a major Central Flow Control
enhancemsent planned for 1983 implementation. Using Official
Alrline Guide schedules, flight plans, arrival times, and
manually entered data, ELOD is to determine areas of projected
traffic saturation in sectors and at selected points throughout
the U.S. Airspace., The traffic demand 1is predicted over a
longer time period than the period associated with FPCP. An
alert message 18 generated if the projected traffic demand
count for any sector or point in a sector exceeds a threshold.
This information is provided to the local flow management per-
sonnel in the center who may resolve the heavy traffic
situation.

ELOD is likely to reduce the incidence of conflicts that would
occur without its presence. However, its intent is to estimate

1-5

D a0 20y L R AL R B D B 40 RSN AN U N T e S S

4
“
7
”l
s
'I
h
1
1
X
1
1
9
3
A
N
R
4‘1
‘4
:
‘d
r
"
g
g
.31
i
[l
‘
I

e

R
s 4 N A
.-'{A fl’&"

ot

ot

traffic demand on a continental scale rather than to predict

separation violations for 1individual aircraft. It has no
information about an aircraft's current position or speed.

g

v
t"t" v
v Oy

I
s %5

Conflict Alert

The currently-implemented Conflict Alert Function, described in
“"National Airspace System Configuration Management Document:
Automatic Tracking™ [6], is designed to observe radar-tracked
data and alert the responsible controller when certain separa-
tion criteria are predicted to be violated. The time
thresholds involved are much shorter than ELOD's and too short
for Conflict Alert alone to assure routine aircraft separa-
tion., Although Conflict Alert is provided with current tracked
positions, speeds, headings, and assigned altitudes, it 1is
limited by a lack of knowledge of aircraft intent in the hori-
zontal plane, and hence 1s subject to false alerts and missed
alerts. This limitation, in a sense, is opposite to that of
ELOD, which is dependent on intent, but not on tracked poeition.

Airborne Collision Avoidance Systems

Airborne Collision Avoidance Systems, such as the Traffic Alert
and Collision Avoidance System (TCAS), alert an aircraft's
pilot to collision threats as described in "Collision Avocidance
Algorithm for Minimum TCAS II” [7]). The controller is not
involved with the alert. Like Conflict Alert, TCAS 1{is
dependent on current relative tracked positions and velocities
of nearby aircraft but not on intent. To an even greater
degree than Conflict Alert, a TCAS alert (which appears some 30
seconds prior to predicted closest approach) implies that cor-
rective action 18 necessary; an ATC operational error has
probably occurred if the alert involves controlled aircraft.
Neither TCAS nor Conflict Alert is adequate for safe separation
of aircraft; both serve primarily as collision avoidance sys-
tems.

1.4.1.3 Requirement for a Flight Plan Conflict Probe

> A problem that exists with all of the above systems is that
~ none combines knowledge of intent with knowledge of tracked
A position. The difficulty is that confidence in purely tracked
data diminishes rapidly as the projection period increases
- beyond that of Conflict Alert (two minutes), while confidence
N in flight plan accuracy, reasonably high on ELOD's coarse scale
:-_'Z-_-j of hours, diminishes rapidly when finer predictions are at-
v tempted. The time scales in the intermediate future, however,
"j are most appropriate as thresholds to alert controllers of

1-6

i .

PRI

. ' e # -
DAL AR

| D R I B |

>
#,
04
-
)
<u
-

conflicts: close enough in the future that corrective action
is required, but far enough in the future to allow the control-
ler time to resolve the conflicts in a routine and deliberate
fashion. With the introduction of the AAS, it becomes possible
for the first time to combine knowledge of tracked position and
intent on this intermediate time scale.

1.4.2 Effect of Future AAS Enhancements on Flight Plan
Conflict Probe

The role of FPCP may undergo certain modifications in future
enhancements of AERA. These modifications are described in
detail in "Operational and Functional Description of the AERA
Packages” [8].

l.4.2.1 Conflict Resolution

In AERA 1, the Flight Plan Conflict Probe is a detection ser-
vice only. The controller may respond to FPCP information by
Planning, verifying and manually uplinking (by voice or data
link) resolution maneuvers for the aircraft. Later, the output
of FPCP will feed into an automatic resolution service called
Conflict Resolution. Conflict Resolution may itself need to
invoke FPCP to test proposed resolutions for possible conflicts
with some third aircraft. As automation proceeds, the control-
ler's responsibility in planning and coordinating resolution
maneuvers will decrease. If necessary, however, he will be
able to revert to manual resolution of conflicts using FPCP (as
in AERA 1).

Implementation of Conflict Resolution may imply a change in the
criteria used by FPCP to determine conflicts. Additional fac-
tors may need to be taken into consideration as FPCP's output

is increasingly used by other algorithms rather than by con-
trollers alone. These factors are discussed in Section 2.2.4,
Separation Criteria. .

1.4.2.2 Long Range Probe

A function called lLong Range Probe (IRP) 1is planned for
AERA 1.02. The algorithm and the operational use for this
function are still under development. The function may require
FPCP support in the form of input data. LRP will help a con-
troller decide whether to accept a proposed flight plan or
flight plan amendment (e.g., for an off-airway user-preferred
route). It will differ from Flight Plan Conflict Probe in that
it will not predict conflicts between specific aircraft pairs.
Rather, LRP will attempt to indicate the presence of heavy

1-7

o
Coh
\‘:\:
o~
5%
SN traffic areas to the controller to help the route approval
decision process.
ii LRP will complement FPCP by providing independent data to the
DeY controller concerning proposed flight plan changes. In effect,
N it will gerve as an intermediate function between FPCP (which
R has a shorter time-frame but uses intent 1like LRP) and ELOD

oy (which has a longer time-frame but uses statistical projectiomns
o like LRP).

XY

:;E 1.4.2.3 Improved Input Data

: As improvements are made on the quality of input to FPCP (pre-

dicted aircraft positions), FPCP may use progressively longer

ﬁﬁ- look-ahead times for purposes of planning. Also, the separa-
\iﬁ tion thresholds used to determine when to alert the controller
:{b may be made smaller as ability improves to distinguish false

NN alerts. Possible input enhancements include the following:

Lo e implementation of Mode S data 1ink (a digital two-way
j}ﬁ air/ground communication system), which will permit
:{f better information on aircraft intent and improved
e

weather data (especially for winds aloft)

e 1improved vertical tracking

XX

:{: ® 1ncorporation into the automation data base of position
Y or intent information that 1s currently discussed and
N agreed upon by the pilot and the controller via verbal
v means only

;:j 1.5 Flight Plan Conflict Probe Summary

.*

3 This section describes FPCP from an operational point of view
‘r:l and gives an overview of its internal functioning.

| 1.5.1 Operational Description
.vE: The Flight Plan Conflict Probe informs controllers if the tra-

g Jectory of an aircraft violates, within a certain time period,

.
¢ b

;;{ specific separation criteria in the horizontal and vertical
S dimensions, with respect to the trajectory of another air-
g craft. These criteria differ from the separation standards
" currently in use by ATC as described in the FAA's document "Air
2 Traffic Control”™ [4]). If the separation criteria are predicted
- to be violated for some pair of aircraft and the violation
C:ﬁ occurs within the specified time period, a conflict is said to
o 1-8

N

.,::.g

s

% %

e e et sy e .. _ .
R o T e e e e T g ;

PN . e, -t . . B - I w“ N L P
(P N PO IR AP T Py ALY '. "" -t .'-‘_h._-.l ..h-ki .".-'J;.‘, y t\;h‘)..h;:‘:‘ ~ A}A_' -P,'.": .':-’_ o P

.....

occur, and the controller is presented with a message describ-
ing the situation. The controller receives information early
enough to produce a resolution and to act proaptly, if neces-
sary, in order to eliminate a conflict.

AR X Nl

The message may be in the form of text and/or a graphic dis-
play. It includes information such as the two aircraft IDs,
routes, altitudes, predicted horizontal and vertical miss dis-
tances, and the time interval when the separation criteria are
predicted to be violated.

24
t B R

Ay A4

% FPCP distinguishes two types of conflicts: advisory and prior-
ity. A priority conflict indicates that the controller should
begin a resolution determination process at once. The process
is assumed deliberate (rather than hasty); the criteria allow
for complications but not for procrastination. An advisory
conflict does not necessarily require immediate attention.
Separation criteria for priority conflicts use tighter thres-
holds than those used for advisory conflicts (see Section
» 2.1.11, “Advisory and Priority Terminology”).

Ll

o s

The controller may receive conflict information by requesting a
trial probe as defined in "Operational and Functional Descrip-
tion of AERA 1.01" [3]. A trial probe involves the testing of
a proposed flight plan change which the controller enters
manually. The motivation for a trial probe may be a pilot
request for a route change or the testing of a resolution of
one conflict to assure that it does not generate any other con-
flicts. The aircraft's current trajectory remains in the
global data base so that all other FPCP processing continues
during the trial probe the same way it would have in its ab-
£ sence,

- 1.5.2 Processing Overview

Flight Plan Conflict Probe is invoked automatically based on an
event assoclated with one specific aircraft called the sub-
OO Ject. This event may be that the subject aircraft first enters

:l the data base or its trajectory is altered or extended. Other
~ aircraft in the data base (whose trajectories have at some pre-

vious time been processed by FPCP as subjects) are designated

as objects. FPCP compares the subject's trajectory against
those of each object.

When FPCP is invoked, the subject aircraft's trajectory is com
pared with the trajectory of object aircraft to rule out
objects that, for each interval in time, are separated from the
subject by large horizontal distances. The center's entire

St

/)

3

1-9

+ A Y

airspace, plus a buffer region, comprise the center's planni
region which is overlaid by a grid of cells in (x,y,t§ space.
Certain cells which the subject and object aircraft trajectory
approach or pass through are marked "occupied.” (The “occu-
pancy” criteria for the subject are different from those for
the objects, as explained in Section 2.1.7.) Objects are elim—
inated from further consideration if they do not share with the
n subject the occupancy of at least one cell. The remaining ob-
N jects are listed; they include all aircraft that will closely

4 approach the subject aircraft in the horizontal and time dimen-
A sions.

The 1ist is then edited to rule out pairs well-separated in the
vertical dimension. The same vertical criteria are used for
both advisory and priority conflicts. For the level portiomns
of the subject aircraft's flight, the vertical criteria are
that no other aircraft penetrate within a vertical threshold of
its assigned flight level. For those portions of the subject's
flight involving vertical maneuvers, Trajectory Estimation pro-
vides a set of points that define a lower and an upper vertical
bound as functions of time. The vertical criteria are that no
alrcraft pemetrate these bounds. In practice, FPCP uses these
bounds to associate a single upper and lower bound with each
grid cell. As a result, a small percentage of objects may be
declared conflicts when they in fact are slightly outside the
vertical bounds (the extra computational burden of eliminating
them does not appear to be justified, particularly since the
upper and lower bounds can be set to reflect this grid-based
approximation).

s 4
' o
.
b

ey

_‘“ﬁ- <

NN X XN
-";"3\1 ';"J J" i I !

The final sequence of tests use rigorous, mathematical methods
to determine whether any of the remaining objects actually vio-
late the separation criteria with respect to the subject. Two
simple checks, one for overlap in time and the other for viola-
.. tions in the vertical dimension, are followed by a more
/ rigorous test in the horizontal dimension. FPCP considers the
distance between the subject and each object as a function of
time. If this distance is predicted to fall below a preselec-
ted threshold distance, the advisory/priority criteria are said
X to be violated. The time at which this distance falls below

A

o the threshold is referred to as the time of violation, which is
e computed and stored in the data base.
=~ &

3 Next, the time to display the conflict message 18 calculated.
- The message is displayed far enough in advance of the time of
3 violation to allow a reasonable amount of time for the control-
ler to resolve the conflict. The length of this "reasonable”
interval of time 18 a system parameter. It may 1include

1-10

A AN

Luta?

R4, %4
il

allowances for complications (such as the failure of initially-
proposed resolutions), as well as time to coordinate with
pilots and other controllers. The time at which the display
_; appears is simply the time of violation minus this parameter.

.
e P

ot by

ey
.

g Fg .l'. .'-:'
atat L

2

X
P P el Sl e

s a" .

e

Lo

a7,
o

A& 4 C

L}
B

o

",

[

%

llllll“

.‘ Cly s

1-11

I'Ib

S,

o

JEPTGGP LU RETY e STRT R VRN N T WY O S O)

1000

<
‘4
N

LA A e e adn Ty G S I -_‘.‘G_-“'_V_._-_.q_-:c_"v_.__ﬂ..‘r*‘.-‘-__'V._--_"f_: KPR MR AP e A e

g

DEFINITIONS AND DESIGN CONSIDERATIONS !

Section 2 defines terms that will be used in the following sec-
tions and lists design considerations that impact the choice of
an algorithm for FPCP.

2.1 System Design Definitions h

Some fundamental terms which are used in this and other AERA
specifications have already been defined or discussed in Sec-—
tion 1. This section will define additional terms, many of
which are used only in this specification. For easy reference,
a glossary of both the general and specific terms is included
in Appendix D.

2.1.1 Resynchronization

One type of automatic trajectory alteration is resynchroniza-
tion, defined as the task of recomputing the estimated
trajectory of an aircraft when the trajectory is inconsistent
with the aircraft's recent history (as determined by radar
track data and controller inputs). An AERA function called
Conformance Monitoring determines when resynchronizations are
necessary and Trajectory Estimation performs them.

2.1.2 Time Horizom, Delta Horizon and Horizon Update

Flight Plan Conflict Probe considers future trajectory informa-
tion only up to a certain time bound, called the time horizon.
The time horizon is far enough 1in the future that mwmost
trajectories within a planning region are encompassed in their
entireties (i.e., only a few extend beyond the time horizon).
It 1is advantageous for Flight Plan Conflict Probe (and for
Sector Workload Probe) to process trajectory information as far
into the future as possible, although neither function depends
on the outputs from such processing beyond a certain time limit.

Should a trajectory contain a portion that extends beyond the
time horizon, that portion is not processed immediately by FPCP
(or SWP). Periodically, at intervals of delta horizon, the
time horizon 1s updated. 1Its value is incremented by delta
horizon. The event 1is called a FPCP horizon update, and 1t
causes an lnvocation of FPCP. A determination is made whether
a portion of any aircraft's trajectory is encompassed by the
updated, but not the original, time horizon. The set of such
aircraft 1s called the horizon subject set. FPCP treats each
aircraft, in turn, as the subject, considering only the inter-
val from the original to the updated time horizon. Any

2-1

''''''''''''''''

. - * 4" T et . - . . - - - . N . . . - - e .
IR SRS TN v, R AL P S P ce e e e AR
e . i B oo BB B lnd o o A .8 A A A - - S N A D S A A e B D A A A, A -

o g) i Sl i St T it age - o
At nait A g & & W T S TN A A SN L S g

A violations of separation criteria found during these invoca-
2 tions must be between two members of the horizon subject set.

2.1.3 FPCP Trajectory Update

A FPCP trajectory update is defined as any of the following
three events:

® A trajectory is added to the center's automation data
base for the first time. -

Ay

® A trajectory already in the center's automation data

base 1is resynchronized by the Trajectory Estimation
-‘ Function. (Possibly the resynchronization was per-
AN formed in another center and timing information was
o passed to this center.)

e A trajectory already in the automation data base 1is
- altered due to an action by a controller or by another
oo AERA function.

- Hereafter, the terms FPCP trajectory update and FPCP horizom
" update will be shortened to trajectory update and horizon up-
date, respectively. (Note: SWP uses slightly different

definitions for these terms; the SWP terms do not appear in
. this volume.)

In AERA 1, each trajectory update results in an invocation of
' Flight Plan Conflict Probe (as well as Airspace Probe and a
s subfunction of Sector Workload Probe).

2.1.4 Segments, Cusps, and Segment Chains

The flight path of an aircraft is actually a continuous, smooth
curve in four dimensions. However, aircraft flight paths are
approximated by a series of 1lines . (in space-time) called
segments, joined together at their endpoints, or cusps, to form
a trajectory or a segment chain (Figure 2-1). A trajectory's
segment is denoted in the data base by its component cusps.

i. [A "" A {.'

L%

«“ %
O T S T SN

2.1.5 Holding Patterns and Maneuver Envelopes

It may at times be necessary to delay an aircraft's en route
progress. For example, the terminal area at the aircraft's
destination may be saturated when the aircraft is due to arrive
there. In that case, a controller may direct the aircraft into
a holding pattern or hold at a point along its route, causing

PRy
Kt atakt

»
a

' e

2-2

0 Ty
A‘l l‘.'}

.,- {.‘.:."‘ {«{q’{-;’ ".:.;.‘ ',,.;- -:-‘._-\.-‘.L..'.-..; . '.:__.;\‘.: ,..-__.; - ::-.' _: ;'.;_'.'_'.::-.' - R .

<~“,.,
WA

A Le K
a.. & ':‘l“"..‘

J’n—‘“ A...

a7

g

»

SO0
- ‘..-_".n, NN

R

54 4 .b‘ ‘u'_.

'

|

-
~
~

4

L4

L

Cal

"
2%
3

Cells

\ Segment

Cusp

KDL AN N

/N

L~ Cells

Segments

FIGURE 21

— Cusp

THE SEGMENT CHAIN AND THE GRID CHAIN FOR A TRAJECTORY

2-3

.....
.....

it to maneuver within a specified airspace. The holding pat-
tern may take on any one of two possible general forms:

e a horizontal holding pattern, within which the air-
craft maintains level flight

¢ a8 holding pattern with vertical extent, within which

the aircraft, instructed by the controller, changes

Y altitude using a spiral-like descent (or, conceivably,
climb) profile :

e Figure 2-2 illustrates these two types of holding patterns.

The figure also shows the geometric structures which enclose
N these holding patternms and which are comstructed by the Trajec-
fz: tory Estimation Function to represent the holds in the data
f\:j base. The horizontal holding pattern is enclosed by a rectan-~
] gle and is limited to one flight level, while the holding
2] pattern with vertical extent 1s contained within a rectangular

block in (x,y,z) space which may span many flight levels.
0, Trajectory Estimation provides the vertices of these maneuver
-j, envelopes whenever a holding pattern is a part of an aircraft's
N trajectory. It also provides the spatial and temporal entry
e and exit points of the holding pattern maneuver. The z coor-

dinates of these points are equal if and only if the hold is
horizontal. These two points are generally referred to as

A cusps, except when they need to be distinguished from regular
S::: cusps, in which case they are called holding pattern cusps.
v The entry and exit points of a holding pattern define a segment
;-,:: of the trajectory. Whenever it is necessary to distinguish
1 such a segment from one defined for a trajectory with no holds,
: the segment is referred to as a holding pattern segment (versus
X% a regular segment). Otherwise, it is simply referred to as a
*‘J:: segment, as described in Section 2.1.4 (Segments, Cusps, and
3 Segment Chains).
90
2':" 2.1.6 Airspace Grid and Its Cells
It 18 useful to represent the planning region airspace by a
¢ grid in (x,y,t) space, called the airspace grid. The discrete
}’j{," compartments in the airspace grid are called the grid cells, or
‘{’j _: simply cells. Each cell is bounded by surfaces parallel to the
e X, Yy, and t axes (the projection of a cell into the (x,y) plane
- is simply a square). The horizontal and time dimensions of the
o cells are system parameters. Given these parameters, a cell
R may be uniquely defined by three numbers corresponding to the
K positions of the edges of the cell along each of the axes.

-. .. ’
SN

1
ils

e
-,

PURRY
.,

| |
»>- | ' —
L ———————— _J

Vertical

Extent

(Not to
Scale)

Horizontal Extent

(b) Holding Pattern with Vertical Extent

Legend:

(o) Entry and Exit Points (Cusps)
— = = Structure Edge

e Afrcraft Path

.......

FIGURE 2-2
GEOMETRIC STRUCTURES ENCLOSING
TYPICAL HOLDING PATTERNS

2-5

...........

AL e e RSIC At AR A o e e A R e A S A R e e P I

LASEIASAR KL LU EL SRR -

.........

It is assumed that a coordinate system is used which allows a
rasonably convenient means of Iinterfacing data among centers,
even over wide geographical areas. Effects of the curvature of
the earth may cause the shape of the cells to deviate slightly
from their "ideal” square shape assumed here. Such effects are
not significant to the algorithm and are not discussed further
in this volume.

2.1.7 Cell Occupancy, Grid Chains, and Buffer Cells

As the trajectory of an aircraft traverses the airspace grid,
its segment chain intersects or occupies a sequence of cells.
In this section, cell occupancy is carefully defined so that
the subject and a given object are considered in conflict only
if they "occupy” at least one common cell. An effective strat-
egy in FPCP is to use a minimal number of cells to represent
trajectories for object aircraft, which are many in number,
while placing the burden of providing separation assurance on
the single subject aircraft. This strategy has the advantage
of greatly reducing the storage requirements for lists of occu-
pled cells, which are called grid chains. The cells drawn in
Figure 2-1 form the grid chain for the segments showm.

The cell list containing a minimal number of cells used in con-
Jjunction with object aircraft is called the sparse grid chain.
The criterion for determining that a cell is to be considered a
member of the sparse grid chain is that the current aircraft
segment chain penetrates the cell in such a manner that at
least two octants of the cell are intersected (octants play a
critical role in the Grid Chain Generator described in Sections
3.3.1 and 4.1). Less sparse representations may be used but
the assoclated FPCP algorithms are made less efficilent.

It is possible to construct pairs of trajectories which violate
separation criteria while not producing overlapping sparse grid
chains. Therefore, sparse grid chains by themselves are not
suitable for FPCP separation assurance. Certain additional
buffer cells, neighbors of those in the sparse grid chain, are
selected for the subject aircraft. The list of these plus the
sparse grid chain is called the buffer grid chain. Enough buf-
fer cells are added to assure that for each violation of
- separation between the subject and an object, the subject's
Fi buffer grid chain and the object's sparse grid chain contain at

K|
u

afats

least one cell in common. Finally, we may define what is meant @
- by an occupied ceil: for an object aircraft, it is any cell in k
7 its sparse grid chain, and for the subject aircraft, any cell

i: in 1ts buffer grid chain.

s A3N. 4

L’L(l)L)A.‘.L.‘L

2

e DRI

.............................
F L S N -
............ < - . . . PRI -t e

! R Ny C e, L et .
. e ‘e " - e, N . - . et -~ » . . . e N
PN P P I IR TP PO L PRI LA YAy PRI G S R R NI O T SRR IR VU T T N VUV Y A O S ST R S G Y S, S .

7. ‘.\ .-" "‘- A =b K "._‘f‘_"u_':'{.-.".."-

When the cell size in the x and y dimensions 1s suitably
chosen, the buffer grid chain need include only the cells of
the sparse grid chain and all of their orthogonal and diagonal
nearest neighbors.

2.1.8 The Sparse Subject Tree, Buffer Subject Tree, and
ZIIoBiect Tree

Flight Plan Conflict Probe maintains a data structure called a
tree to represent the sparse or buffer grid chains of ome or
more aircraft. In graph terminology, a tree is a set of nodes
(called tree nodes) connected by edges with the following prop~
erties:

o Each tree node 1is assigned a nonnegative integer,
called the tree node's level, which represents the
tree node's position along the vertical axis of the
tree.

e Exactly one tree node, called the root, has a level of

e Each edge connects tree nodes whose levels differ by
one. The lower level tree node (one closer to the
root) is called the parent of the higher level tree
node (one further away from the root), which, in turm,
i8s called the child of the lower level tree node.

e Each tree node other than the root has exactly one
parent. The root has no parent.

A tree node's ancestors consist of its parent, parent's parent,
and so on, all the way to the root. Its descendants are 1its
children, children's children, etc. A tree node with no chil-
dren is called a leaf.

In relational data base terms, a tree is represented by a table
showing all the parent-child relationships (tree edges). Both
parent and child are keys. In global tables, the tree nodes
are always referred to (in full) as tree nodes, to distinguish
ther from nodes in ATC terminology, where the word has an
alternate meaning. Although the ATC meaning of "node" does not
occur in this document, it is well-established in the current
ATC system and may be used in future documents describing later
vergions of AERA., In the text and in local tables in this
volume, the shorter form "node"” will be used hereafter; the
term is always intended to mean a tree node.

2-7

P il e alalalala”

a a4

PRPRY V- S

Each node 18 associated with a portion, or block, of the grid.
The root of the tree represents the entire grid. Blocks asso-
ciated with a node's children are called octants or subblocks.
The leaves, which all have the same level, represent the cells
of the grid. Each node's block contains the blocks of the
node's descendants and is contained in the blocks of the node's
ancestors. Any set of cells in the grid (and, in particular,
the grid chains) may be represented by a tree containing a leaf
for each cell plus the ancestors of each such leaf.

Let n be the smallest positive integer such that a square 2B
cells wide (along each of the x and y axes) encloses the entire
planning region. Consider this square extended to a cube in
(x,y,t) space by projecting it along the time axis by 20
cells. The cube is a block in the above sense. The block may
be divided in half along each axis to form eight octants -
“"northwest-early,” "northwest-late,” etc. Each octant may
itself be divided in a similar way. A total of n divisions can
be carried out before the (indivisible) cell level is reached.
Figure 2-3 illustrates the procedure for n = 3, the level of
each leaf.

In FPCP, only the blocks containing occupied cells (called
occupied blocks) are actually represented by nodes 1in the
tree. Nodes corresponding to blocks whose cells are all unoc-
cupied are not represented. The occupied cells form the leaves
of the tree. Figure 2-4 indicates how the tree representation
is accomplished in two dimensions. Several journal articles
[9, 10, 11, 12) provide some useful theoretical results and
algorithms for quad trees (two-dimensional versions of the
three-dimensional octal trees used in FPCP).

Depending on the separation parameters, there may be several
times as many cells along the t axis as along the x and y
axis. That is, the time from now to the time horizon, divided
by the width of the cell in the time dimension, may be larger
than the number of cells needed to span the planning region
horizontally. The discussion 1is somewhat simplified if the
ratio of the former to the latter is assumed to be a small
integer power of two. If the entire airspace grid were simply
halved repeatedly in each of the x, y, and t dimensions, cell
width would be reached in the x and y dimensions before cell
width is reached in the t dimension. It is desired, however,
to reach cell width in all dimensions at the final division,
corresponding to the tree's leaves. Therefore, the first few
branching levels from the root are binary, not octal, and
repregsent divisions of the grid on time alone. Octal branching

2-8

37

36

35

d

36

335 /

”
e e p X

33

3321333
330|331

31

32

30

LR S0 N % |
5 Aty sy % 4

4,\\-1

L AR

FIGURE 2-3
AIRSPACE GRID IN THREE DIMENSIONS

.......

T e

P
S Nt S
L. PN YN U D TN O e

S
R LSRR
Tv VS ye

2-9

Aaoa-t.-n.l.t A\-‘\-t.\

Y T T TR T AT AT T s T T T e, v

a,
)
s

e,

ROOT

A R R

"' ‘l. 'l

.. 02

a TN

»
.

“ ‘:" i _‘;\‘-.‘..,'.‘.'-.,S :' s

.
a4

db 44 s il

012 013 021 022 100 101 110 111

o
e

s ‘s

013

»
Ey
o

100[;5 111

Y GO SRS R R

Al
RS

FIGURE 24
X TREE REPRESENTATION OF THE AIRSPACE GRID IN TWO DIMENSIONS g

"
aa

2-10

; b
ARANRIRE

begins only when blocks (of size 2B) are reached that have
the same number of cells in all three dimensions (Figure 2-5).

When FPCP 1s invoked, it creates two (local) trees, a buffer

subject tree and a sparse subject tree, which represent the

cells of the subject aircraft's buffer grid chain and of its

sparse grid chain, respectively. FPCP also maintains another
) tree called the allobject tree, which represents the union of
‘ the cells in the sparse grid chains of all aircraft in the
planning region.

2.1.9 Nominees and the Coarse Filter

A working hypothesis in this formulation of the FPCP is that a
. detailed comparison of a subject trajectory with each object

-

::'Z- trajectory in the planning region, wusing a mathematically
N rigorous statement of aircraft intent and the FPCP separation
S criteria, is computationally inefficient. Some prescreening is

needed to eliminate subject-object pairs from further consid-
~ eration when they “obviously” are well separated (in space or
¢ time). The existence of prescreening is justified, in prin-
4 ciple, since it reduces the overall processing time of the FPCP

\'§ algorithm. In practice, it has a secondary justification—the
> data used for prescreening provide useful information for Sec-
tor Workload Probe,

D A first-level screening, called a Coarse Filter, is performed
o in order to eliminate object aircraft that are well separated
o from the subject. The remaining objects, called the nominees
- or nominee aircraft, are listed for further screening. No
objects that violate the FPCP separation criteria are omitted

- from this list.
o
':'. 2.1.10 Encounters and the Fine Filter
%

The Coarse Filter produces nominees which may not actually vio-
. late the FPCP separation criteria. Another filter, called the
4o Fine Filter, invokes algorithms that, through more rigorous
. mathematical analyses conducted on subject-nominee segment |
o pairs, can identify those nominees whose trajectories violate {
) both the FPCP ' ‘rizontal and vertical criteria with that of the !
subject aircratt. If such a violation is found to exist, the

event 1s called an encounter and the aircraft intruding into '
N the subject aircraft's airspace 1is called an encounter air- '
,;.:: craft. If neither aircraft's trajectory changes, the encounter

will, with the passage of time, tecome an (advisory) conflict.

2-11 1

Current Time Time
Is Within This Horizon
Interval
r—
3
x
y
T Yy
Plaoning
Legend: Region

——— Ma jor Divisions - Time Only

Subdivisions on x, y, t

(X, Y, T) GRID SHOWING GREATER EXTENT IN T DIMENSION

Node Represents Cell with " %"

FIGURE 25
ILLUSTRATION OF TREE WITH EARLY DIVISION ON T ONLY:
LATER DIVISIONON X, Y, T

2-12

VAN

DI A A /e A S S A P py—

. e e R N e e o s
IR SO SO G ST PO S P PEINOPCES L T PRV IR T VY A

o
AR B YLe? A Ve ol B

PP SECTREY N)

_ 2.1.11 Advisory and Priority Terminology

»
ot B

« The Fine Filter uses two distinct sets of criteria in its
. testing for conflicts in the horizontal and time dimensioms,
L one for advisory and the other for priority conflicts (in the
vertical dimension, the same criteria are used for both types

of conflicts). Each set of criteria consists of a threshold
o for the horizontal test and another for the time to display
}4_'.‘ : test. In the horizontal and time dimensions, a pair of air-
. craft are said to be in conflict if the horizontal separation
distance between the aircraft is less than the horizontal sepa-
ration threshold and the time until the separation between the
aircraft reaches this horizontal threshold is less than the
time threshold.

DBV T W

A

ROV Y

The first set of criteria consists of the horizontal separation
threshold or advisory Seph (Separation horizontal) and the time
threshold or advisory Sept (Separation time).

The advisory time of violation is the time at which separation
first falls below the advisory Seph. An advisory message,
featuring information on a conflict, is displayed to the con-
troller at the display-as—advisory time, which is the later of

e the time prior to the advisory time of violation by the
amount of the advisory Sept

e the current time

If the time of violation is currently less than the current
time plus the advisory Sept, an advisory message may be dis-
. played at once and the criteria discussed below are tested.
7 Figure 2-6 1llustrates the relationship between Seph and Sept
- for advisory and priority conflicts. In Figure 2-7, the
N display-as—-advisory time and advisory time of violation are
identified relative to the separation between a pair of air-
craft and the point of closest approach.

The second set of criteria are analogous to the first, except
T the values of the thresholds, priority Seph and priority Sept,
are smaller. The priority time of violation is the time at
which separation falls below the priority Seph. Information on
such an encounter would be displayed to the controller in a
priority message at the display-as—priority time, which is the
later of

e the time prior to the priority time of violation by the
amount of the priority Sept

2-13

..........

-
v
AR
o
¥
-
<
>
A Predicted
¥ Horizontal

Separation -

-

. Advisory N

. Seph #

Priority i

Seph
Time
—_—
Current Current Current
Time Time Time
+ +
Priority Sept Advisory Sept
Legend:
Locus of points for which advisory
/ messages are displayed
Locus of points for which priority
mesgages are displayed
FIGURE 2-6

RELATIONSHIP BETWEEN ADVISORY AND PRIORITY SEPARATION .

AND DISPLAY CRITERIA -

L 4

2-14 :.‘

L

.........................
.........................

'-B_-‘ A_A_'J N A IR AR AP AT T Iy Lu-ik>(Ltk A e tacacaYatas L&A'LA‘—‘L-L A At el

M TR R TN T T T T N T et et L
- - " - . ta ~ - - - -

-'F'J“"\ Lt cud-ve b sud snd Sl AL A A SRS

-
oy
Ry
5
L Predicted
R Horizontal
'.‘:;\ Separation
R Between
v Subject and
! Object
o
1
Ny
(5K
> Advisory
Seph
: '.\:
s Priority
Seph
>
Current ‘ Time
Time
Display-~as- Priority
Priority Time Time of
Violation
Display-as- Advisory Time
Advisory Time Time of of
Violation Closest
Approach
FIGURE 2-7
CRITICAL TIMES ASSOCIATED WITH ADVISORY
AND PRIORITY VIOLATIONS
2-15
e et i i e v N e i e

.
-

.
S
S
e
>t ’.-
et

.

Ilﬂ
* -

A UL
oy 4
F R

° the current time

2.2 Design Considerations

This section lists considerations that =must be taken imto
account when designing an algoritha for FPCP.

2.2.1 Minimal Required Controller Knowledge of Algorithms

The FPCP algorithm has been designed so that the controller may
use the information generated without knowledge of the algo-
rithm's details. An operational understanding of the algorithm
may be useful so that the controller can interact and utilize
the functions and their outputs.

2.2.2 Display Format

This specification does not address the formats that may be
used to display FPCP data outputs or to enter requests for a
trial probe or a list of encounters. It has been written under
the assumption that the display 1s flexible and easy to use
(perhaps menu driven), has some standard editing capability,
and can satisfy both the controller who wishes to explore every
feature as well as the controller who wishes to minimize the
time required to learn how the function is used.

2.2.3 Considerations Involving Uncertainties in Aircraft
Position

FPCP performance 1s only as good as the automation data base,
including approved flight plans, weather, aircraft performance
information, and estimated trajectories. Should a controller
approve a modification to a flight plan but fail to enter the
information into the data base, any displayed conflicts for the
aircraft will likely be erroneous since they are based upon an
obsolete trajectory. Also, actual conflicts resulting from the
new flight plan may not be detected and displayed.

There are ways that erroneous trajectories can be detected
automatically for manual or automatic revision. In AERA 1,
disparities in the longitudinal (along track) direction between
the estimated trajectory and radar return for an aircraft are
corrected by resynchronization (although not immediately due to
tracker lag). Trajectory Estimation modifies the stored value
of the aircraft's speed to account for the observed error, and
recomputes the trajectory. Lateral (across track) disparities
are not corrected automatically, since when such an error
occurs, an aircraft can no longer be assumed to be following

2~16

pduca it s gt puL gt adhai o A A YL NN e A O S

its flight plan. A message indicating the disparity is
displayed to the controller, who may update the data base. In
the meantime, systems that do not use the automation data base
(such as Conflict Alert and TCAS, described in Section 1.4.1.2)
serve as backups. In case of conflicts involving an aircraft
with a lateral disparity, an 1indicator of the disparity
accompanies the display of conflict information.

2.2.4 Separation Criteria

The values of FPCP horizontal separation criteria (advisory and -
priority) are an 1issue that 1is still the subject of study. .
They influence directly the optimal selection of cell size in

the horizontal (x and y) dimensions. The AAS Contractor should 1
regard separation parameters and cell size as constants to be)

determined. A number of factors may influence the choice of .
the horizontal criteria. The rate of false alerts is one fac-]
tor. Another 1s the trade-off between resynchronization rate
and the advisory (and priority) Seph: as more error is allowed !
before triggering a resynchronization, FPCP must use larger

thresholds to assure separation just prior to the resynchroni-
zation. It 1s possible that the time elapsed since the last
resynchronization is a factor also.

e s

’

In later stages of automation, factors that are less easily

measured may become important in setting horizontal criteria.
These factors may include the overall complexity of the situa-]
<

tion, additional conflicts caused by possible resolutions,
current/ future controller workload, metering plans, etc.

In the vertical dimension, separation criteria for FPCP are
more easlly defined: all altitudes that an aircraft may
legally reach (subject to controller restrictions) and can
physically attain (subject to considerations of weather,
weight, etc) must be protected.

Trajectory Estimation provides information to FPCP regarding
vertical separation criteria. An upper and lower bound are
associated with each vertical maneuver. These bounds, like
trajectories, consist of points or vertices in four-space con-
nected by lines. The upper portion of Figure 2-8 illuatrates a
simple case, where a descent has been cleared with no inter-
mediate restrictions. To achieve vertical separation, other
aircraft must pass outside the bounds. Trajectory Estimation
provides four vertices which identify a vertical maneuver
envelope. The four vertices are as follows:

:

LA

2-17

PR - PR SR U W R A - S50 RV N

s A
SN
A

s
4

W
A
//
I
I
|
I
|
_4
-~

i 2N
-~y
—
-
-

Tl

a
o«
.

Altitude \

Distance Along Course

la
N -_--_..\4a
\ \ at-or-below
\ \ restriction
Altitude 2a, 1b ' ——— %
\ \
\ \
\ \
\
Zb\""""""" A
3b
Distance Along Course
Legend:

left upstream vertex
left downstream vertex
right downstream vertex
right upstream vertex
first maneuver envelope
second maneuver envelope

(- BNV
[I I I B

FIGURE 2-8
UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER ENVELOPES

2-18

L0l vt outl it At sarmes s Dl i S IR C TR

S LA

A

gt paniec2ade Shticibenr Mast i St Sanaatin A el YL S Y
P R v T - .)

1. The earliest point at which the maneuver may begin
(left upstream vertex in a descent)

2. The point at which the desired altitude 1s reached,

if the aircraft maneuvers at its maximum vertical
rate as early as possible (left downstream vertex)

3. The 1latest point at which the maneuver may begin
(right upstream vertex)

4, The latest point at which the desired altitude must
be reached, or some point far in the future if no
such constraints exist upon the maneuver (right down-
stream vertex)

The controller may direct the pilot to achieve a given altitude
(at, at or above, at or below) by a given place along the
course. The maneuver envelope can be split into two separate
maneuver envelopes to model this situation. For example, in
the lower portion of Figure 2-8, the pilot has been instructed
to be at or below the indicated altitude by point P on the
courge. The vertices defining the envelope around the first
part of this maneuver are labelled la, 2a, 3a, and 4a, while
those defining the second envelope are labelled 1b, 2b, 3b, and
4b.

Note that very large amounts of vertical airspace may need to
be protected in the absence of intermediate restrictions. How-
ever, a small number of such restrictions, even just one, can
result in large reiuctions in the amount of airspace needing
protection.

In level flight, FPCP uses as upper and lower bounds the flight
altitude plus or minus a vertical threshold (a global constant
with different values for altitudes below and above 29000 feet).

2.2,5 Initiating the Display of FPCP Information

When FPCP has completed its search for encounters involving the
subject aircraft, the updated information is made available to
the display function, including the display-as-advisory and
display-as-priority times. The display function displays the
advisory or priority message for an encounter to the
appropriate controller(s) when the current time reaches the
encounter's display-as—advisory or display-as-priority time.

2-19

.............

CEE W e o e AR

AR AT AT A AL et it i Rt G PPN AT ety S S A MM SR ND AL TOIE S S

2.2.6 FPCP, Sector Workload Probe and the Airspace Grid

This specification assumes that SWP and FPCP use a common air-
space grid. This assumption may allow considerable savings in
computer storage and execution time. The updating of the grid
is a significant portion of the FPCP processing which, with a
common grid, needs to be done only once per invocation of
FPCP. The width of the FPCP grid cells in the horizontal and
time dimensions are system parameters. There are certain
implications in setting them equal to the respective horizontal
and time widths of the SWP cells.

The exact horizontal dimensions of the grid cells are, within
broad limits, not critical to SWP. They are critical to FPCP;
the exact value is still to be determined but is expected to
fall within SWP's broad limits. On the other hand, the exact
dimension of each grid cell in the time dimension is, within
broad limits, not critical to FPCP but 1is critical to SWP.
Multiplied by 2% for some positive integer k, it must equal
some convenient length of time (e.g., 15 minutes, rather than,
say, 13.79) over which the outputs are calculated and dis-
played. Further study may prove that the optimal range of the
grid cell’'s time extent for FPCP does not include a value com—
patible with SWP's need for a conveniently-sized time unit. If
80, grid-commonality implies that the cell's time extent must
be rounded up to such a value, at the cost of more nominees and
more calls to the FPCP Fine Filter. There are certain advan-
tages, however, even apart from SWP considerations, for the
FPCP grid to be divided on the time dimension in convenient
clock increments, even 1if these are not quite optimal in
reducing nominees. For instance, to do a trial probe the
controller might want a list of all encounters with display-as-
advigsory times earlier than 3:00 p.m.

The costs assoclated with assuming common grids for both SWP
and FPCP appear to be outweighed by the benefits. It is worth
noting, however, in view of the fact that SWP and FPCP system
parameter values have yet to be determined, that different
grids could be used for SWP and FPCP without substantial
changes 1in either specification. The Grid Chain Generator
(Section 4.1) would simply be run twice, once for each grid,
and at each trajectory update, both grids and both trees would
be updated.

2.2,7 Boundary Considerations

FPCP determines conflicts throughout the planning region, which
includes the center plus a buffer region. The algorithm has

2-20

been designed under the assumption that controllers have as
much time to resolve conflicts transitioning into their center
as they have for conflicts entirely within the center. For
boundaries with non-AERA airspace, the buffer region is assumed
large enough to allow the usual level of information promptness
and completeness for any conflict with a point of violation
within the center's airspace.

2.,2.8 Controller Interface

This section discusses controller interface issues, including
who may access FPCP outputs and who may trigger and/or accept a
trial probe.

2.2.8.1 Who Is Informed of Conflicts

This specification does not present an algorithm for deter-
mining which controllers are notified automatically of
conflicts. For FPCP to work as designed, however, the control-
lers who are responsible for resolving the conflicts (including
those responsible for the sectors the aircraft will occupy at
the display-as-priority time and perhaps the display-as—
advisory time) must be notified automatically. It may be
necessary to notify the controller who would be responsible if
the controller(s) currently responsible fail(s) to resolve the
conflict. Other controllers may benefit from seeing the con-
flict data upon request. It may also benefit the controllers
responsible for conflicts to be able to access, upon request,
data concerning encounters (which may become conflicts in the
near future).

2.2.8.2 Trial Probes

This specification places no explicit constraints on who may
perform trial probes. Any controller may probe any aircraft
having a current trajectory. In later versions of AERA, auto-
mation functions such as Conflict Resolution and Metering may
invoke a trial probe. Any number of controllers or functions
may perform trial probes simultaneously, but each may test only
one trial trajectory (that of its subject aircraft) at a time.

2.2.8.3 Who May Accept Trial Flight Plans

No change is anticipated for AERA 1 in the current rules for
deciding which controller may give a clearance to a pllot for a
nev plan. These rules are discussed in the FAA's document "Air
Traffic Control” [4]. Controllers must coordinate clearances
with each other under AERA 1 just as they do in NAS.

2-21

.............

- .
AR .k LR | « O A e T oo e e T o T re s .
SRR IR R A G AR IR LSRR EA AR AR E AR “a % . Y PR I S S AT W PU. U5 TP A S-S

LIRS A N v"n-{‘“r A A NAAEILETM NN

FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN

.‘p‘_“"h@&.l:n'.n...&‘&-r P TOY S W VU G REPC VAN PN

Figure 3-1 illustrates the high-level organizational structure
of the Flight Plan Conflict Probe algorithm.

3.1 Environment

This section describes required input and output data, and
1ists conditions causing activation of the FPCP algorithm.

3.1.1 Input Data and Activation

3.1.1.1 Input Data

The input to FPCP consists of:
o The trajectory and maneuver envelopes of each ailrcraft
in the data base, and the trial trajectory and maneuver
envelopes, if any .

o The stimulus for invoking FPCP (trajectory update, hori-
zon update, trial probe)

o The identity of the subject's trajectory (trajectory
update and trial probe only)

e The identity of the trial trajectory (trial probe only)

3.1.1.2 Automatic Activation Sequences

Flight Plan Conflict Probe is triggered automatically by either
a trajectory update or a horizon update.

3.1.1.3 Controller Initiating Sequences

A controller may initiate a trial probe for a particular air-
craft. The controller enters a trial flight plan for the
aircraft into the system and its trajectory is constructed by
the Trajectory Estimation Function. FPCP is 1invoked with this
aircraft as the subject. However, the current (original) tra-
Jectory would be wused should FPCP be invoked immediately
thereafter for a different subject, either automatically or via
another controller's trial probe.

""" A T e T N et e e

L0 s s pat i e i ted At i AU Sl T SRR

' .\.__.-_L " -—ui.‘ v

T T T T Lt

!

AN
“nabalel el oda

- v &
LR

Iy

A

oy

v

A W N ¥ 8L

Sl
A

FPCP

Grid Chain
Generator

Coarse
Filter

Fine
Filter

Maintenance

Section
3.3.1

MY
<
'

Section

3.3.2

FIGURE 3-1
FPCP ORGANIZATIONAL STRUCTURE

PO O K R P .
- AL et e .. > S e
S VN T I A A N T A P L P I e A R e

3-2

Section
3.3.3

-

Section
3.3.4

Lt " LI B
PV R S . TR

L
r PEORY
@ «
PP

LA T Iy
"4’1,14{‘.{‘.,.;-.

3.1.2 Output Data

(4
s

3.1.2.1 Output to Global Data Base

}l

‘:‘?n‘t' '

FPCP contributes the following to the global data base:

e A table containing information on each current encoun-
ter, including the identity of the aircraft involved and
the geometry of the encounter. It is the culmination of
the FPCP processing. The data are accessed by Sector
Workload Probe.

e,

® A table containing information on each encounter that
has been determined no longer current (due to a trajec-

tory update). Sector Workload Probe uses this table for
housekeeping purposes, after which it deletes the table.

e A table containing information on the sparse grid chain
of each object aircraft. Flight Plan Conflict Probe
creates this table for determining conflicts. This
table 18 also used by Sector Workload Probe to determine
time and sectoring information for workload distribution.

FPCP makes information on encounters available to the display
function (not described in thie specification). The table pro-
vides enough information to determine when to display advisory
and priority messages.

3.2 Design Assumptions

Three stimuli can cause an invocation of FPCP: the trajectory
update, horizon update, and trial probe. The subfunctions are
developed with the stimulus type as an input and use algorithms
common to all three types. Any special 1logic required to
perform an operation particular to a given stimulus can be
invoked when necessary.

For a trial probe, two additional inputs must be passed to
FPCP: the identity of the subject aircraft's trial trajectory,
and the identity of 1its existing trajectory. By the time of
FPCP invocation, Trajectory Estimation will have output both
trajectories to the global data base. The trial trajectory's
identity must differ from that of the subject (as well as from
thogse of the other aircraft) im order to avoid determining a
“"conflict” of the subject with itself.

.....

[

3
52

PO
]

- R
) KON
. e
.t s e D

"n"(P
M A

L

TR
e
S
PRI

LY

4

A
¥e

For a trajectory update, the subject's identity 1is 1input to
FPCP. Again, by the time of FPCP invocation, Trajectory Esti-
mation will have updated the subject's trajectory.

For a horizon update, FPCP requires no inputs except the stimu-
lus type. FPCP 1is invoked periodically, at intervals of delta
horizon. It determines the 8set of aircraft whose tra-
jectories extend beyond the time horizon. The portions of the
trajectories which are within a time interval of length delta
horizon beyond the time horizon are processed in turn, leading
to the identification of possible encounters. All of the
subfunctions of FPCP, that is, the Grid Chain Generator, Coarse
Filter, Fine Fllter, and portions of Maintenance are invoked,
in turn, for each trajectory portion.

3.3 Subfunctions

3.3.1 The Grid Chain Generator

The Grid Chain Generator (GCG) uses the cusp data from the tra-
jectories as input data for the subject aircraft, It orders
these by time into comsecutive pairs to form segments. It also
uses data on the maneuver envelopes to provide additional pro-
tection about the subject aircraft's maneuvers. Its outputs
are the following:

The sparse grid chain
The buffer grid chain
The sparse subject tree
The buffer subject tree

3.3.1.1 The Sparse Grid Chain

The Grid Chain Generator algorithm loops through each segment
of the subject's segment chain, marking certain cells it passes
through as occupied (as defined in Section 2.1.7, Cell Occu-
pancy, Grid Chains, and Buffer Cells) and adding them to the
sparse grid chain. First, the cell containing the segment's
(beginning) cusp is added to the grid chain. The direction (x,
y, or t) in which motion through the grid is most rapid (in
terms of the number of cells crossed per unit length) is desig-
nated the steepest direction.

A point on the segment 1s considered whose projection is one
cell width farther along the axis of the steepest direction;
the cell in which it 1lies is added to the grid chain. This
cell 1s an orthogonal or diagonal neighbor of the previous
cell. Note that the trajectory may pass through other cells

3-4

.........

e g WIW W W T E WS (M w I IT s Te T T v, Y, T, e -,
CVCSESES OO L A SO C SR SRS NEE SER SN AN AR SR AR SR : ST .

e T e ROT R TL T Te

R
-
"
.
—
\'
.
N
. "
e

that are not marked occupied. Such cells are only “"nicked” by
the segment, i.e., the segment intersects only one octant.

The GCG continues adding occupied cells to the grid chain in
this manner until the cusp marking the next segment 1is
reached. For the new s8egment, the steepest direction is
updated if it changes, and the cell occupied by the beginning
cusp is added (if it is not already in the grid chain). The
process continues until the last segment is reached.

VIR AL v ! FE Y

Figure 3-2 1llustrates an example in two dimensions. Two

straight line segments joined by a cusp are shown. The corres-

ponding occupied cells are marked by a shaded circle. Such
v, cells compose the sparse grid chain.

3.3.1.2 Vertical Maneuvers and Holding Patterns

The sparse grid chain as derived from the trajectory informa-
tion requires no further modification for trajectory segments
representing straight lines or turns in level flight. However,
> the existence of vertical maneuvers and holding patterns neces-
sitates the addition of extra protection about the nominal
trajectory derived solely from the cusp data.

In the case of vertical wmaneuvers, the altitude range toc be
protected for each sparse cell is stored.

The case of a holding pattern may require the use of additional
cells to protect against uncertainty i1in the aircraft's
position. The cells added represent the union of (a) those
cells that would be added to the sparse grid chain were each
X boundary edge of the geometric structure enveloping the holding
) pattern (in (x,y,t) space) treated in turn as a segment, and
(b) any interior cells.

3.3.1.3 The Buffer Grid Chain

The buffer grid chain is a list of all cells whose x, y and t

coordinates differ by no more than one cell width from a cell
", in the sparse grid chain. Buffer grid chain cells are shown as
S unshaded circles in Figure 3-2., The sparse grid chain's cells
form a subset of the cells of the buffer grid chain.

It can be shown that 1if no cells of the buffer grid chain of a

subject aircraft coincide with a cell of an object's sparse

grid chain, the subject and object do not violate the FPCP
! separation criteria.

AAAAN) . SRR

T
4 _a &

-

AT AR L SR LT e R S e
T | 1
:'.-:- :
'i I
% |
e
N
:_t:
- yh
3 7 ;
<
. |
[
5 O () O '
4 O (@) (@) O (@) :
2
3l O ® (o] ® \o o)
2l @ (@) () O) O (@) #
I O (@) O (@) (@) |
0 (o) o)
) 1 2 3 4 5 6 7 x l
Legend: :

@ Cells in Sparse Grid Chain

Q Cells Added to Form Buffer Grid Chain

- o Pt . mEE———— N 24 8

FIGURE 3-2
SPARSE AND BUFFER CELLS ASSOCIATED
WITH A TRAJECTORY

3-6

3.3.1.4 Information Stored with Sparse and Buffer Cells

The grid chain includes the following information for each of
its cells:

e the trajectory identifier (sparse cells only)
e a cell number called a node identifier

o the earliest and latest times of the first and last
segments, respectively, occupying the cell

¢ the minimum and maximum altitude for which protection 1s
provided .

B 3.3.1.5 Generating a Tree from a Grid Chain

The last task of the Grid Chaln Generator is to comnstruct the
sparse subject tree and the buffer subject tree. The trees are
built from the leaves to the root. Each cell in the sparse
grid chain 18 referenced by a leaf in the tree. The GCG stores
each parent node/child node relationship for the subject. This
consists of determining the unique (2x2x2) block (composed of 8
cells) containing the cell. The cells and blocks may be num-
bered in such a way that these relationships can be identified
by bit manipulations on the cell number. A tree node is
created for the block if none yet exists. A two way link is
establighed between the cell's node (the child) and the block's
node (the parent). A list is made of each 2x2xZ2 block that is
represented in the tree. Next, the process is repeated to in-
clude in the tree the 4x4x4 blocks containing the 2x2x2 blocks,
and so on, until the whole airspace (root of tree) is reached.

YA

g

2
2N

RRARRICS

Jala

A temporary tree is built for the buffer grid chain in a simi-
~ lar way except that the subject trajectory identifier 1is not
) needed. ’

A

3.3.2 The Coarse Filter

l“

L (MR L ERAR LN 2L el

The Coarse Filter searches each cell of the subject's buffer
grid chain to see if it is also a cell in the sparse grid chain
of any of the object aircraft. The algorithm outputs a nominee
table, which specifies for each object aircraft which cells are
co—occupied with the subject and which segments are responsible
for each co-occupancy. The nominee table is passed on to the
Fine Filter (Section 3.3.3) for further, more detailed tests.

| ORI

.

> s EEW S

‘.‘lgnlll‘l.

3-7

g ¢

Dy

.
R - P

o

'\n',\

In practice, it is not always necessary to search each cell in
the subject's buffer grid chain. The fact that the grid chains
are stored as trees allows the algorithm to terminate a search
quickly i1f no object aircraft are in the vicinity of the sub-
ject. The algorithm compares the subject's tree with the
allobject tree. An absent node in either tree indicates vacant
airspace in the corresponding block of the (x,y,t) grid. If a
node is absent in one or both trees, the Coarse Filter does not
need to look at any descendants of the node (i.e., subsets of
the node's (x,y,t) block). Appendix C develops some background
on trees and the technique of recursion which 1is necessary in
order to explain the Coarse Fllter processing in more detail.

Once an object aircraft is found to co-occupy an (x,y,t) cell
with the subject, the altitude test simply checks for overlap
of the two ranges (subject's minimum altitude this cell, sub-
ject's maximum altitude this cell) and (object's minimum
altitude this cell, object's maximum altitude this cell). When
an overlap occurs, the necessary data on the subject and object
segments contained in the cell are added to the nominee table.

3.3.3 The Fine Filter

The Fine Filter of Flight Plan Conflict Probe is a subfunction
designed to identify all encounters (i.e., violations of FPCP
separation criteria) between a single subject aircraft zz2d an
object aircraft in the nominee table provided by the Coarse
Filter. It accomplishes this task by analyzing the segments of
alrcraft trajectories which are associated with co-occupied
cells identified in the nominee table. Specifically, for every
object aircraft in the nominee table, the Fine Filter performs
a series of tests to determine if the subject and object air-
craft segments which are associated with a co-occupied cell
violate FPCP vertical and horizontal separation criteria. A
special check is made to assure that no two segments are com-
pared more than once, thus avoiding duplicate processing. If
an encounter between the subject aircraft and a nominee 1is
detected, then a table which maintains encounter information
for all of the aircraft in the planning region is updated with
this latest information.

3.3.3.1 Tests of Time and Space

The subject and object aircraft segment palr undergo a seriles
of tests in time and space which indicate whether or not an
encounter 1is possible. The tests are performed in sequence,

each successive test checking for segment non-compliance with
stated goals 1in a particular dimension. Only those segment

3-8

.
..
o

LA
o " ta Y.

pairs which do not satisfy a goal are passed on to subsequent
tests. All other pairs are eliminated from further comsidera-
tion. Thus, it is desirable that the tests be ordered so as to
eliminate as many of the non-conflicting segment pairs as pos-
sible during the earlier stages of the process. Accordingly,
the segments are first checked in time. If they overlap in
time, they are checked for violation of vertical separation
within the time interval in common between the two segments.

The vertical separation criterion is a function of the alti-
tudes of the aircraft. If the vertical separation criterion is
violated during the common time interval, the segments are
tested for violation of horizontal separation criteria. If
both criteria are violated, an encounter 1s predicted to occur
along the segments. Information relevant to each encounter,
such as the minimum separation distance in the horizontal plane
and the time of minimum separation, is calculated and stored in
an encounter table.

3.3.3.2 The Encounter Table

The encounter table is contained in the global data base and
provides information about all sircraft in the planning region
that are predicted to be involved in an encounter. Within the
table is stored information about every encounter detected by
the temporal and spatial tests. The table contains the flight
plan identifications and a set of parameters which include the
start and end times of the advisory and priority violatioms,
the display-as-advisory and display-as-priority times, the
ninimum separation distance of the aircraft in the horizontal
plane, the time of minimum separation, and the positions
(x,y,z) of the aircraft at the start and end of the advisory
violation. This information is available to the AERA display
function which notifies the appropriate controller(s) of
possible conflicts.

3.3.4 Maintenance

Flight Plan Conflict Probe requires that up-to-date versions of
all relevant data tables must be maintained. For this reason,
FPCP includes as one of its principal subfunctions a procedure
called Maintenance. Maintenance adds and deletes data asso-
clated with specific flight identifications from appropriate
global and FPCP shared local tableas. Details of the Main-
tenance subfunction are provided in Section 4.4, Maintenance.

3-9

- O.h\‘: 'l,_. ~

L}
r2 '.‘L'J

ey

KN ¢
LR B

SRR ARER
A

oy

[N

O

‘l

.

2 d w¥e"a
Js.:..;..‘ ..P P

4.

DETAILED DESCRIPTION

The Flight Plan Conflict Probe has four subfunctions:

Grid Chain Generator
Coarse Filter

Fine Filter
Maintenance

The first three subfunctions are activated in succession as
they are listed. The fourth subfunction is invoked as needed.
The Grid Chain Generator preprocesses trajectory data to

produce a set of cells occupied by the subject aircraft and
produces a tree representing these cells. The Coarse Filter

compares this set of cells for the subject against corres-
ponding cells for the objects to determine any cells in both
sets. The aircraft pairs are tested for violations of the
vertical separation criterion within these co-occupied cells.
For pairs with vertical violations, the Fine Filter analyzes
the segments of the trajectories corresponding to the common
cells. Tests are made sequentially to check if the segments
overlap in time, altitude and horizontal distance. The
Maintenance Subfunction updates the various local and global
data structures, as required, during processing of the other
subfunctions.

4.1 Grid Chain Generator

The Grid Chain Generator subfunction of FPCP is wused to
generate the sparse and buffer grid chains for the subject
aircraft. Also, it generates the Sparse and Buffer Subject
Trees to represent the cells of the respective grid chains.
The Buffer Subject Tree is used by the Coarse Filter to detect
co-occupied cells which indicate nominee status and the need
for further checking by the Fine Filter. The Sparse Subject
Tree 1s used by the Maintenance subfunction for insertion of
the subject into the Allobject Tree and is kept for future use
by Maintenance.

The Grid Chain Generator consists of three major components: a
Sparse Cell Generator to generate a sparse grid chain for the
subject trajectory, a Buffer Cell Generator to generate a
buffer grid chain for the subject, and the Grid To Tree
Converter to convert a sparse or buffer grid chain to a Sparse
or Buffer Subject Tree.

The organizational structure of the Grid Chain Generator is
illustrated in Figure 4-1,

4-1

;?.

' 'l. e ey
Ry

)
A

»

ToLy
o,

Ol -
¢

a u, 4,

FRRIKE -

AR

]

A

» %
A
e

PRCAG
/..':., !

l’;’l" .

)
)
PSR

1 N
Y4 %

»
% "i

A5 e
N

PP ‘ h

[N

i P
AN P‘Al.':.' .y

GRID
CHAIN

GENERATOR
SPARSE BUFFER GRID TO
CELL CELL TREE
GENERATOR GENERATOR CONVERTER
Section Section Section

4.1.1

4.1.2

FIGURE 4-1
GRID CHAIN GENERATOR ORGANIZATIONAL STRUCTURE

4-2

4.1.3

. |
Y
4
R

AN

Lol s'-\"'}

P I Rt DR
7 RE S

U I .

Pt AT A AL oA N N SR i

A

4.1.1 Sparse Cell Generator

$.1.1.1 Mission

The Sparse Cell Generator component of the Grid Chain Generator
updates a global table listing all cells occupied in the sparse
sense by the current subject aircraft trajectory. It
accomplishes this objective by using data that describes the
subject's nominal trajectory in (x,y,z,t) space. It also sets
upper and lower altitude protection 1limits for each cell
assoclated with a vertical maneuver or holding pattern segment.

4.1.1.2 Design Considerations and Component Environment

Inet

This component requires, as local inputs, the unique identifier
for the subject aircraft flight plan (Subject_Fl 1d), the start
time for the evaluation (T Start), and the end time of the
evaluation (T_Horizon). Usually, T Start will be the present
time, but for a horizon update it will be the old time horizon
less one cell time interval, and for a trial probe it will be
one time cell less than the time of divergence from the current
trajectory. The input T Horizon is the current time horizon.
These inputs are provided by the Grid Chain Generator component.

Sparse Cell Generator also uses information from the global
table TRAJECTORIES which describes the position and time of
each trajectory cusp, as well as the type of maneuver envelope
(1f any) associated with each cusp.

Information on maneuver envelopes is provided by the global
table MANEUVER ENVEIOPES and is used by the elements of Sparse
Cell Generator. The table, SPARSE . CELLS, which is updated by
the elements of Sparse Cell Generator, is also a global inmput.

Output

The output of Sparse Cell Genmerator is an updated version of
the global table SPARSE CELLS. This table contains information
which 1s calculated by the elements of Sparse Cell Generator.
It contains a 1list of cells that are occupied in the sparse
sense by the subject aircraft's trajectory.

-------------- LA PR ST T S N U T W WL G WP WP IR W Gesr- S W

DA Y Bl A e N l"v‘l“‘"(R B

S . e T R . . T " R . N
LS AT T e . o Vs

e e S

MNP DRI Y W

. = LAAAAAL-“

s
[

i

4
4
-

e
[4

RS

2,
v ‘v

s
Fals

I g b
IR A

‘l .l

R

o, €W

4

« T ,
PR
T
AP ‘.
. 1 >

£
»
s

.................

4.1.1.3 Component Design Logic

The Sparse Cell Generator uses a number of elements in

fulfilling its goals. The organization and calling sequence of
the Sparse Cell Generator is given as follows:

|Sparse Cell Generator

| Determine Independent Variable

| Straight Line Generator

| Encode

| Vertical Protect

| Hold Area Protect

| Determine Independent Variable
| Straight Line Generator

| Encode

The processing logic of Sparse Cells Generator is given by the
PDL in Figure 4-2. First, this component locates all TRAJEC-
TORY records pertaining to the subject aircraft trajectory. It
then transfers the required data from that table to local
arrays which are ordered by time. A count of the records
retrieved 1s noted.

Consecutive pairs of cusps are taken together to form trajec—
tory segments. Sparse Cell Generator's main loop 1s repeated
for all cusp pairs starting with the segment that bridges the
starting time (or the first segment, if none do) and ending
with the segment that bridges the time horizon (or the 1last
segment, if none do).

The coordinate data and the time data for the cusp pairs is
operated on by the elements Determine Independent Variable and
Straight Line Generator. These elements are responsible for
translating each segment into a sparse chain of occupied cells
for the trajectory's regular segments. All segments are
processed in this manner before processing begins for maneuver
envelopes. This order is followed because altitude limits for
cells occupied by the segments which follow the envelope may be
affected by the vertical wmaneuver. These cells must be
selected before attempting to calculate their altitude limits.

Following the creation of the sparse cells for the nominal
trajectory, the Sparse Cell Generator loops on all of the
segments searching for maneuver envelopes. If a vertical
maneuver 1is found, then the Vertical Protect element 1is
called. If a holding pattern 1is found (with or without
altitude change), then the Hold Area Protect element is invoked.

4-4

—a
-

B s

Lo

L
LA

.o
LR T Y

4
«

kR v
acadilh. b

4
P
. A

ROUTINE Sparse Cell Generator; g
#Component of Grid Chain Generator# K
PARAMETERS Subject F1 Id IN, T Start IN, T _Horizon IN; g
REFER TO GLOBAL TRAJECTORIES IN;]
DEFINE CONSTANTS 4
Flag Flag set to 1 indicates that Straight Line Generator

is called from this routine to produce the nominal

trajectory; g
DEFINE VARIABLES -]
Subject Fl Id Flight identifier of the subject aircraft a

T Start Starting time for sparse cell generator
#This 18 set to the present time for new flight plans and # N
#resynchronization, to the time point of the alternate# R

#trajectory for a trial probe, and to the old time horizon#
#minus one time cell for a horizom update#
T _Horizon Time horizon
Time(*) The time values of the trajectory cusps
ordered by time
Cell Line Parameters(6) Pass through vehicle for parameters from
Determine Independent Variable to
Straight Line Generator (includes xyt

o 1 0
oY arary

starting cell numbers and slopes) K
X(*) The x values of the trajectory cusps [
ordered by the time of the cusps 9
Y(*) The y values of the trajectory cusps :
ordered by the time of the cusps
Z(*) Altitudes ordered by the time of the cusp
Cusp_Iype(*) The cusp types of the trajectory cusps
ordered by the time of the cusps
M Coumt The number of cells traversed by the
segment
N_Beg Starting value for maneuver envelope loop
N End Fnding value for maneuver envelope loop
N_Count A count of trajectory records
N Index to loop on cusps;
DEFINE TABLES
REGULAR_CELLS Table containing information on cells occupied
by the regular segments
time The nominal time at which the cell was
occupied -
node-id The cell number; L}
FIGURE 4-2
SPARSE_CELL GENERATOR
X
4-5 -

[y

. 3 "'- ~I ”
l"”...‘A{A‘A‘

»
. *

SahNs

a
.

$hp o wnl S
AN

s
L)

o’
R RO B

%

.........

SELECT FIELDS time, x, y, z, cusp_type
FROM TRAJECTORIES (TJ)
INTO Time, X, Y, Z, Cusp_Type
WHERE TJ. fl id gg_Subject F1 Id AND (TJ.time GT T Start AND
TJ.time LT T Horizonm)
ORDERED BY TRAJECTORIES.time
RETURN COUNT (N_Count);
N _Beg = N_Count;
N End = 03
FOR N =1 T0 N Count - 1;
" #determine 1f any portion of the segment is within the time#
#bound of the probef
IF Time(N+l) GT T Start AND Time(N) LT T Horizomn
THEN #Find regular segment¥
determine direction in which motion is most rapid#
CALL Determine Independent Variable (Time(N+1) IN,
T X(N+L) 1IN, Y(N+1) 1IN, Time(N) IN, X(N) IN, Y(N) IN,
Cell Line Parameters OUT, M Count OUT);
#generate cells for regular segmedEJ_
CALL Straight Line Generator (Time(N+1) IN, Z(N+l1) IN,
~ Time(N) IN, Z(N) IN, Subject_Fl_Id IN, Flag 1IN,
Cell Line Parameters IN, M _Count IN, REGULAR CI CELLS 0ouT);
N_Beg = MIN(N, N _Beg);
N_End = MAX(N, N End);
FOR N = N_Beg TO N End,# Loop for maneuver envelopes#
T IF Cusp_Type(N) EQ 'Vertical maneuver'

#add altitude range to cells for vertical maneuvers#
CALL Vertical Protect (Time(N) IN, Subject F1 Id IN,
REGULAR CELLS IN),

IF (Cusp_Type(N) EQ "Hold') OR (Cusp_’ Type(N) EQ
*Vertical hold"’

THEN
#add additional cells to account for boundary of hold#
CALL Hold Area Protect (Time(N) IN, Subject F1 Id IN);

END Sparse Cell Generator,

FIGURE 4-2
SPARSE_CELL_GENERATOR (Concluded)

PR
D at P ol B m e

"

WS BRI T

EO YN AT RN

s

X3 3

>
»

-

Nigtaty
LN A-l}A

Determine Independent Variable

The element Determine Independent Variable determines in which
dimension the trajectory 1is changing most rapidly. The
variable or axis corresponding to this dimension is called the
independent variable or independent axis. The following
discussion describes the role of independent variables in
finding the cells which are occupied in the sparse sense.

It already has been noted in Section 2.1.7 that penetration of
a cell does not imply that the cell will be declared occupied.
Operationally, Section 3.3.1.1, The Sparse Grid Chain, defines
a cell to be occupied if a line traversing it occupies more
than one octant of the (three-dimensional) cell (or quadrant of
a cell in the two-dimensional example of Figure 3-2). How then
is this operational condition to be implemented algorithmical-
ly? This volume does not attempt an explanation of the
mathematics; instead, 1llustrative examples are given of how
the correct grid chain is generated by wusing the correct
independent variable, but not by wusing the incorrect
independent variable.

Figure 4-3 shows a straight line transversing a two dimensional
grid where x is the independent variable. Using the "more than
one quadrant” criterion, the cells having solid circles should
be identified while cells penetrated for just one quadrant
(open circles) should not. Each vertical “"column™ of cells
along the x-axis 18 considered in turn. The y-coordinate is
computed for the point on the segment whose x-coordinate (the
independent variable) 1s the center of the current column of
cells. The cell containing the resulting y value 1s marked
occupied. Exactly one cell will be marked occupied for each
column of cells. For each horizontal "row" of cells (along the
non-independent y-axis), more than one cell may be marked
occupied.

Figure 4-4 shows a second straight line to which the "more than
one quadrant” criterion has been applied. Cells marked with
solid circles, both starred and plain, would be marked
occupied. Applying the procedure as described above (with x
chosen as the 1independent variable) will produce only the
astarred cells. The resultant grid chain (if passed as is-—-with
gaps—-to the Coarse and Fine Filters after applying the simple
buffering scheme described in Section 4.1.2) will not provide
reliable separation assurance.

A
o
‘-‘
.

b.'
\
-~
N
~

l' -
)

E o ;o o
> sl ’-7/

: I
X
\.\j LEGEND:

)
E} ® Occupied cell

O Penetrated but unoccupied cell

1
|
|
R
|
R
!
d
|
\
g

~ FIGURE 4-3 :
% CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS N
. s i
» B
- -
(S -’ R
’
%.‘ Kl

K]

A

.........

Pd
S
e,

~5
i

p
I.\ .
|.\

-.\ -
l.~"

0
i
-~
'

~

—

/o

S S -

LEGEND:

¥ Occupied cell based on improper choice of
independent axis

@ Cells needed to complete sparse grid chain

FIGURE 4-4
CELL OCCUPANCIES USING INCORRECT INDEPENDENT AXIS

4-9

'
.
.
.
l

- -.*A\)\'q‘.' -\ ‘ \.\.!.\ .‘ \‘\":}:{::‘:.-.}-.;'.':.-‘"u..‘i.._-'__-.,‘-“."-_‘- (SR L e P T T RS

RN e

a4 oy

»

JN e,
%

A

4

., 89, 8

A solution to this problem is to interchange the roles of x and
y (and of "columns” and "rows” of cells) to make y the indepen-
dent variable. Thus, in Figure 4-4, values of y at the center
of a row's cells are input to the equation of the line and the
resultant value of x determines which cell is marked occupied.
This change in independent variable must take place when the
net change in y exceeds the net change in x; that is, when the
slope exceeds omne.

The scheme is readily extended to three dimensions as is dome
in Determine Independent Variable. The PDL for this element is
given ir Figure 4-5. First, the coordinates of the beginning
cusp of the current segment are transformed to cell
coordinates. This is a linear transformation, accomplished by
dividing the geographic or time coordinates by the cell size.
Then an offset is added such that the integer part of the cell
coordinate at the lower bound of the cell corresponds to the
cell's grid number along that axis.

The length of the segment, projected along each cell coordinate
axis, is computed and expressed in cell units. The absolute
magnitude of these lengths (called extents) are then compared
to one another and the axis associated with the greatest extent
becomes the independent variable.

Finally, M Count, the number of grid divisions traversed by the
independent variable, is computed, as well as the slopes of the
dependent variable with respect to the independent variable.
The cell coordinates of the segment starting point, the slopes
for each of the three coordinates, and the number of grid
divisions traversed by the independent variable are returned to
the Sparse Cell Generator for use by the element Straight Line
Generator.

The PDL representation of this element is given in Figure 4-6.

Strq;ght Line Generator

Straight Line Generator uses the output developed by the
element Determine Independent Variable. In addition, Straight
Line Generator uses the time coordinates for both nodes (which
serve as keys for the end points of the current segment), the
beginning and ending altitude for the segment, and a flag value
indicating whether the Straight Line Generator is being used to
service a regular segment or a holding pattern maneuver
envelope.

4-10

L3
. 0
te A

%

YA

!.’. .

ROUTINE Determine Independent Variable;

PARAMETERS T _End IN, X _End IN, Y End IN, T Beg IN, X Beg IN, Y Beg
IN, T Beg_ | “Cell OUT, X {_Beg | g Cell OUT, Y Beg_| Cell OUT, T Slope ouT,
X Slope OUT, Y. Ei‘pe OUT, M_Count OUT;

REFER TO SHARED LOCAL T_(Cell Dimension 1) IN, H Cell Dimension 1IN,
T Offset IN, X Offset IN, Y ' Offset IN-

DEFINE VARIABLES

T_End Ending value for time

X End Ending value for x

Y End Ending value for y

T Beg Beginning value for time

X _Beg Beginning value for x

Y Beg Beginning value for y

T_Beg Cell Beginning value of time expressed in cell
coordinates

Y_Beg Cell Beginning value of y expressed in cell
coordinates

X _Beg Cell Beginning value of y expressed in cell
coordinates

T_Extent Difference between beginning and ending values
of time expressed in cell coordinates

Y_Extent Difference between beginning and ending values
of y expressed in cell coordinates

X _Extent Difference between beginning and ending values
of x expressed in cell coordinates

M_Extent Maximum extent

M Count Number of cells traversed by the segment

T Slope Change in time per unit change in independent
variable

Y_Slope Change in y per unit change in independent
variable

X _Slope Change in x per unit change in independent
variable;

FIGURE 4-5

DETERMINE INDEPENDENT VARIABLE

4-11

e m e s .t - e B Y
e e N YT Lt wTmTaT e A oA PP (A

..... . LI T e PRI, S I AR ST,
PG DR PR : - R e R P it

.' -

I.nq-;;. W Y

%
.
‘s‘\
#Compute starting cell coordinates but do not quantize yet#
T_Beg Cell = T Beg/T Cell Dimension + T Offset;
5 Y Beg Cell = Y Beg/H Cell Dimension + Y Offset;
- X_Beg Cell = X Beg/H Cell Dimension + X Offset;
#Compute extents as the difference in beginning cell coordinate#
3 #and ending cell coordinatef
T_Extent = (T_Beg - T_End)/T_Cell Dimension; .
x Y Extent = (Y_ Beg - Y Md)/ll Cell . Dimension;
< X Extent = (X Beg - X_End)/H_Cell Dimension;
s #Determine :lndependent variable as one having greatest extent#
- #Compute the count of cells along that axis#
¥ CHOOSE CASE #M Extent defines the independent variable#
WHEN (ABS(T Extent) GE ABS(X Extent)) AND (ABS(T Extent) :
L " GE ABS(Y Extent)) THEN ‘
o M _Extent = T_Extent;
Y, M_Count = CEIL(T_Beg Cell) - CEIL(T End/T Cell Dimension +
7 T Offsets
Ao WHEN (ABS(Y] Extent) GE ABS(X_Extent)) THEN
H Extent = Y P.'xtent,
s M_Count = CEIL(Y_Beg Cell) ~ CEIL(Y End/H Cell Dimension +
i Y Offset);
» OTHERWISE
:,‘a' M _Extent = X Extent;
o M _Count = CEIL(X Beg Cell) - CEIL(X End/H Cell Dimension +
X Offsets
N #Compute slopes of each variable with respect to independent#
ﬁ'.: #variablef
I T_Slope = T_Extent/M_Extent;
I Y Slope = Y _Extent/M Extent;
] X_Slope = X_Extent/M_Extent;
END Determine Independent Variable;
e
» FIGURE 4-5
o DETERMINE_INDEPENDENT VARIABLE (Concluded)
e
:'_:./
...J
w
< |
o :
- 4-12
i~

o

AN

L

)

...............
MR iR i : - -t B

e SR A AL JALRDAL M PEE SRR 1

ARt B IR AR O R AY R A O e |

‘3

RS 7 v .
' -"'v‘.'-'t":.’.'fl L"JA"

4
'y

WeTavs o
l(‘

L 20

ROUTINE Straight Line Generator;

PARAMETERS T Exit IN, Z End IN, T Eutry IN, Z Beg IN, Subj F1 1d IN,
T Beg Cell IN, Flag IN T B _Beg_| Cell IN, i, X Beg Cell IN, ¥ Beg Cell
IN, Slope 1IN, X Slope IN, Y Slope IN, M Count IN, REGULAR CELLS
0UT;

REFER TO GLOBAL SPARSE CELLS INOUT;

REFER TO SHARED LOCAL T _Cell ! Dimension IN T _offset IN;

DEF v

T_Entry Entry time for current segment

T Exit Exit time for current segment

Z_End Ending value for altitude

Z_ Beg Beginning value for altitude

Flag Set to 1 when routine is called to find regular
segment, 0 otherwise

T_Beg Cell Beginning value of time expressed in cell
coordinates

Y _Beg Cell Beginning value of y expressed in cell coordinates

X Beg Cell Beginning value of x expressed in cell coordinates

T Slope Change in time per unit change in independent
variable

Y_Slope Change in y per unit change in independent
variable

X _Slope Change in x per unit change in independent
variable

Subject F1 Id The flight id of the current subject

T Cell Time expressed in cell coordinates

Y Cell Y expressed in cell coordinates

X Cell X expressed in cell coordinates

Temp T Time at which the regular segment passes through
center of cell ‘

zZ Up Altitude of regular segment at center of cell

Z_Dowm Altitude of regular segment at center of cell

Temp_Node Temporary node 1id

M_Count Number of cells traversed by segment

M Counting index;

DEFINE TABLES
REGULAR CELIS Information on cells occupied by regular segment
time™ Time for cell
node 1d Cell number;
FIGURE 4-6

STRAIGHT LINE GENERATOR

4-13

. . .- .-)
L IR) R T L I . S P A N
(o Loy o DR - AR I A . . N o et -

-f\ A T R T NP TR P N Ly RESPRT S R T W S S UIE U N . S ¥

iy s
LR % g et

a
et

iy JAT
LAACAACR

4
L4
s’ &

|

S

N\
I A G

224

s 7
T IRLL

-

lv

b

e

Loop through cells along independent variable axis
FOR M = 0 TO M Count;
T ' Cell = CEIL(T ' Beg_Cell + T_Slope*M - 0.5);
Y Cell = CEIL(Y Beg Cell + Y Slope*M - 0.5);
X_Cell = CEIL(X Beg Cell + X_Slope*M - 0. 5),
#Convert the cell grid coordinates to a Node number#
CALL Encode(T CELL IN, Y Cell IN, X Cell IN, Temp Node OUT);
Tellp T = (T_Cell - T_Offset ~ 0.5)*T _Cell Dimension;

UP'ZBes;

IF (Z_ End KE Z Beg) AND (Flag EQ 1) #alticude is changing and #
" #doing a regular segment#
THEN
finterpolate to find altitudef
Z Up = Z Beg + (Temp T - T_Beg)*(Z End - Z_Beg)/
(T_End - T _Beg);
Z Down = Z Up,
IF COUNT((SPARSE CELLS.tree node id EQ Temp_Node) AND
(SPARSE ,_CELLS. £l _id EQ Subject F1 1d)) NE 0
THEN
T UPDATE IN SPARSE CELLS (llin z = HIN(nin L 2, Z Down),
max z = MAX(max z, Z Up), entry time = MIN(entry time,
T_Beg), exit time = MAX(exit time, T End))
WHERE SPARSE_CELLS. tree 1 node_id EQ Temp Node AND
SPARSE CELLS. fl id E Subject Fl 1d;
ELSE
T INSERT INTO SPARSE ,_CELLS (fl id = Subject_F1 I1d,
tree node id = Temp Node, min z = 2 Down, max z = Z_Up,
entry time = T Beg, exit tine =T End),
%_;E:lag EQ 1 #routine called to produce regular segment#

~— INSERT INTO REGULAR . CELLS (time = Tenp T, node_id =
Temp Node);

END Straight L:lne_Generator;

FICURE 4-6
STRAIGHT_LINE_GENERATOR (Concluded)

4-14

Y

&4,

o) s al)

.

[)

»
a

OO

4

l' " ...-'.... : ! »

IS

,l

-

Straight Line Generator then uses this information to compute
cell occupancy. It does this by iterating over unit increments
of the independent variable. Using the equation for a straight
line, the position of the two dependent variables is computed
as a formation of the independent variable and expressed in
cell coordinates. (The independent variable i1is also
recomputed, but since its slope is one, its computation returns
the original value.) All of the coordinates are then truncated
to integer values (using the CEIL function) which gives the
grid coordinates of each occupied cell.

For purposes of cell identification and future manipulations
via recursive algorithms, it is convenient to merge the three
cell coordinates into a single identifier called the tree node
identifier or node identifier for short. This is done by the
utility element, Encode. There are many ways of encoding the
cell coordinates into a single identifier. One such encoding
method is particularly natural and is presented as an example.
It helps 1illustrate the concepts involved and the close
relationships existing between the grid cells and blocks «ad
the corresponding tree nodes.

Figure 2-4 shows a trajectory crossing an 8 by 8 grid and the
tree structure that applies to that trajectory. Each leaf is
characterized by a three-digit base four number. This version
of Encode takes two coordinates and converts them to the leaf
number.

Figure 4-7 illustrates the conversion for a particular cell
(labeled 022) in Figure 2-4 (the leftmost cell of the
trajectory). The coordinates of that cell are x = 0 (first
column) and y = 3 (fourth row from bottom). The binary
expressions of these coordinates (x=000, y=01l) are shown at
the top of Figure 4-7. Shuffling the bits as shown results in
the tree node identifier, 022. This is indeed an occupied
leaf-level node as can be seen in Figure 2-4.

In this same 1loop, Straight Line Generator derives the
effective time (Temp_T) of each cell. This is the time at
which the independent variable traverses the center of the
cell. It is used for two purposes:

e computing the altitude wusing linear interpolation
methods

® iIncorporating effective time for regular segments in a

table called REGULAR CELLS. (This 18 needed to
process vertical maneuver envelopes)

4-15

...

CELL IN GRID
ROW 3
COLUMN O
IN FIGURE 2-4

/ﬂ--IIlllllllIlll.‘.llllllll----.\\

3 : 0
BINARY DIGITS OF BINARY DIGITS OF
y~COORDINATE x~COORDINATE
- - T -~ — ——
0 1 1 0 0 0
0 0 1 0 1 0
“ “ R
BINARY DIGITS OF BINARY DIGITS OF BINARY DIGITS OF
-0 2 2
(LEVEL~-1 BRANCH IS (LEVEL-2 BRANCH IS (L.LEVEL~3 BRANCH IS
LOWER LEFT BLOCK) UPPER LEFT BLOCK) UPPER LEFT CELL)

w

NODE 022 IN TREE
IN FIGURE 2-4

FIGURE 4-7
AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID CELL
COORDINATES TO A TREE NODE IDENTIFIER

4~16

..................
D)

................
...................

....................

Finally, the outputs of the Straight Line Generator element as
called from Sparse Cell Generator are computed as follows: 1if
the cell i1s new, then a record is inserted into SPARSE CELLS
including the following fields

e The subject flight identifier

e The minimum and maximum altitude (which have the same
value for regular segments)

e The entry and exit times for the cell
If the cell exists from previous computations as indicated by a
duplication of the flight identifier and the node identifier,
then the other fields are updated as follows: °

o The minimum and maximum altitudes are the minimum and
maximum of the old and current altitudes

e The entry time 1is the mninimum of current segment
beginning time or previous entry time

o The exit time is the maximum of the current segment
ending time or the previous exit time

The Determine Independent Variable and Straight Line Generator
processing has been applied to the entire trajectory shown in
Figure 3-2, and the results are partially shown in Table 4-1.
From left to right, the table shows, for each cell, the
following:

o The cell coordinates

o The corresponding identifiers (using the scheme
illustrated in Figure 4-7)

o The entry time and exit time
e Additional comments

Vertical Protect

If the current segment being processed by the Sparse Cell
Generator 18 associated with a vertical maneuver, then the
minimum and maximum altitudes are not identical. The element
Vertical Protect determines their values. The PDL
representation of this element is shown in Figure 4-8.

4-17

.......................
......................
.......................
v

~~~~~~

PRGE WA Vg T

.....

I
R O, T, SO PO

(BRI | VW W W)

BRI T




(S _bars J Do i e b e e g i ) DAL L CAEI AT, CI A A 04 ST T Al YR ol R B G s s Sear sl S-i o sl o I Bre du i S dbut g |

TABLE 4-1
EXAMPLE SPARSE CELL TABLE

CELL DATA

Cell Node Entry Exit Comment
Coordinates ID Time Time

I X

2 0 020 131 19] Entry into planning

region at tj

3 1 023 ty t,

3 2 032 t t,

4 3 211 t t3 Cusp at t,

3 4 122 t, tg

2 5 121 t, ty

1 6 112 t, ty

0 7 111 ts tj Exit from planning

region at t3

4-18




&)

2,7,
A

N}
D

a1 X

Y
o’

v
P )

-------------

......................

ROGUTINE Vertical Protect;
PARAMETERS Beg Time IN, Subject F1 1d IN, Regular Cells IN;
REFER TO GLOBAL MANEUVER ENVELOPES IN, SPARSE CELLS INOUT;
DEFINE VARIABLES

Subject F1 Id The flight id of the current subject

Beg_Time The time at first cusp in the current segment
Zru Current altitude
Tru Latest time aircraft can leave current altitude
Zlu Current altitude
Tiu Earliest time aircraft can leave current altitude
z21d Target altitude
T1d Earliest time aircraft can arrive at target
altitude
Zrd Target altitude
Trd Latest time aircraft can arrive at target altitude
Slope L Left slope for vertical maneuver
Slope R Right slope for vertical maneuver
Temp_T Temporary time variable
Temp_Node Temporary node ID
Z_Entry Altitude at entry to maneuver envelope
Z Exit Altitude at exit from maneuver envelope
DEFINE TABLE

REGULAR_CELLS Like REGULAR CELLS in SPARSE CELL GENERATOR

FIGURE 4-8
VERTICAL PROTECT

€ 2 Ammsia 2 2. P B P s SR AL ol A alad

.

.........



SELECT FIELDS rd z, rd_t, ru z, rut, luz, lut, 1d 2z, 1d ¢t
FROM MANEUVER ENVELOPE (ME)
INTO 2rd, '.l‘rd, Zru, Tru, Zlu, Tlu, Z1d, Tld
WHERE ME.f1l 1d EQ Subject F1_Id AND ME.time EQ Beg Time;
Slope R = (Zru - zrd)/(Tru - Trd);
Slope L = (Zlu - 21d)/(Tlu - T1d);
#Conpute altitudes for the upper and lower limits of maneuver#
#envelopef
REPEAT FOR EACH REGULAR CELLS RECORD
WHERE REGULAR_CELLS. time GT
AND REGULAR CELLS.time L' LT Trd'
Temp p T = REGUI.AR CELLS.time; :
Z Entry = Zlu;
Z ] “Exit = Zxd;
Il” Temp T GT Tru
THEN #time within bounds of maneuver envelope, interpolatef
#to find exit time#
Z_Exit = Z_Exit + (Temp_T - Tru)*Slope_ R;
IF Telp T LT Tru
THEN #time within bounds of maneuver envelope, interpolatef
#to find entry timef
Z_Entry = Z_Entry + (Temp T ~ Tld)*Slope L;
Temp_Node = REGULAR CEI.LS.node-
UPDATE IN SPARSE CELLS (nin z = MIN(ain L z, Z Entry, 2 Exit),
max _z = MAX(max z, Z_Entry, Z_Exit))”
WHERE SPARSE CELLS.f1 | 1d EQ_Subject F1 Id AND
SPARSE CELLS.tree node id Q Temp | Node;
END Vertical_| Protect°

FIGURE 4-8
VERTICAL_PROTECT (Concluded)

4-20

..........



The two inputs, the time of the cusp and the subject trajectory
identifier, are used to select the appropriate record from
MANEUVER ENVEIOPES. Only the z and t fields are extracted.
The x and y fields are not used. (Indeed, they may have no
physical meaning. Trajectory Estimation computes the four
vertices of a cusp's maneuver envelope before considering later
cusps. A later cusp may nevertheless occur prior to some of
the vertices. If such a cusp represents a turn, the x and y
coordinates of those vertices will not reflect the turn. The z
and t coordinates, however, are valid.)

Altitudes for the upper and lower 1limits of the maneuver
envelope are computed by linear interpolation. This is done by
looping on all cells occupied by the segment (stored in the
local table REGULAR CELLS) that fall within the timeframe of
the maneuver. Then the node identifier for each regular cell
is used to find the applicable SPARSE CELLS record that needs
to be updated.

Updating the altitude range in the table SPARSE CELIS 1is
effected as follows: The maximum altitude is the maximum of
(a) the old maximum altitude, (b) the upstream slope or “"left"”
side of the envelope as applicable (see Figure 2-8), or (c) the
downstream slope or "right” side of the envelope as appli-
cable. Similarly the minimum slope is the minimum of the old
ainimum or of (b) or (c) above.

Hold Area Protect

If the current segment being processed by the Sparse Cell
Generator is a hold, then the volume in (x,y,t) defined by the
holding pattern must be protected. This is done by the element
Hold Area Protect. The PDL representation for this element is
shown in Figure 4-9.

Two inputs, the subject's flight identifier and the time of the
cusp, are used to select the appropriate record from the global
table MANEUVER ENVELOPES.

The outside loop in Hold Area Protect generates a complete set
of hold cells in (x,y) space for each time unit (expressed in
cell coordinates) for which the hold is planned. The 1inside
loop creates a set of straight line segments parallel to the
right side of the hold, and separated by no more than omne
horizontal cell width, as shown in Figure 4-10. Hold Area
Protect generates the end points of these lines and uses the
Determine Independent Variable and the Straight Line Generator

4-21

P I

, . e
SRR SRR LR LY ORI -

P Ta ¥ . e S B T Nt I, W



AR

R RS ae e
XXX AT

,__,

o

i

»
. 3 .&l‘
8 T B TS

AT
& o

i'-‘“"‘ )
T T
}".I A

)
()

o+

- -'_ ‘.‘ l.- l.' '.- I.. ’

’, :’0 .J.l ,'.' L

o
e

»)

............

-------------

...........................

ROUTINE Hold_Area Protect;

PARAMETERS Time IN, Subject F1 Id IN;

REFER TO GLOBAL MANEUVER ENVELOPES IN;

REFER TO SHARED LOCAL T Cell Dimension IN, H Cell Dimension IN,

T Offset IN;
DEFINE CONSTANTS
Flag

DEFINE VARIABLES
Time
Subject F1 Id
Xrd,Yrd,2rd ,Trd
Xru,Yru,2ru,Tru
Xlu,Ylu,Z1u,T1lu
xid,yid,zid,Tld
T_Beg
T _End
Z_Max
Z Min
Cell Line

Parameters(6)

M Count
M _Extent
X Extent

Y Extent
N_Extent
X Delta
Y Delta
T Temp

M

N

X _End
X_Beg
Y End
Y Beg

DEFINE TABLES

DUMMY

Set equal to 0 To indicate that Straight Line
Generator is called from this routine to
update the table of sparse cells only;

Time key of the hold maneuver envelope
Current subject flight identifier
Coordinates of the right downstream vertex
Coordinates of the right upstream vertex
Coordinates of the left upstream vertex
Coordinates of the left downstream vertex
Start time of hold

End time of hold

Highest altitude of hold

Lowest altitude of hold

Pass through vehicle for parameters

Number of cells traversed by the segment

Number of time cells for time cell loop

Length of x component of downstream side of
hold

Distance of y component of downstream side
of hold

Number of parallel straight line segments
needed to cover hold

X increment for locations and points of
parallel lines

Y increment for locations and points of
parallel lines

Current effective time for cells in hold
maneuver

Loop index

Loop index

Final x coordinate for line covering hold

Starting x coordinate for line covering hold

Final y coordinate for line covering hold

Starting y coordinate for line covering hold;

Dummy table defined like REGULAR CELLS

FIGURE 4-9
HOLD_AREA PROTECT

4-22




SELECT FIELDS right_downstream vertex, right upstream vertex,
left_upstream vertex, left_downstream vertex
FROM MANEUVER ENVELOPES (ME)
INTO Xrd, Yrd, Zrd, Trd, Xru, Yru, Zru, Tru,
Xlu, Ylu, ZIu, Tlu, Xid, Yid, Z1d, Tid
WHERE ME.fl id Eq Subject F1 id AND ME.time EQ Time;
#Pind start and end times of hold#
T_Beg = MIN(Trd, Tru, Tlu, Tld);
T End = MAX(Trd, Tru, Tlu, Tld);
#Find highest and lowest altitudes in. hold#
Z Max = MAX(Zrd, Zru, Zlu, Z1d);
Z Min = MIN(Zrd, Zru, Zlu, Z1d);

#Find number of cells corresponding to the hold duration# i
M_Extent = CEIL(T Beg/T_Cell Dimension + T_Offset) - 5

CEIL(T_End/T Cell | Dimension + T_Offset); ‘ 2
X htent = Xrd = x1d; N

Y Extent = Yrd - Yld;

#Find independent variable along downstream side and set N Extent#
#to twice the maximum number of cell sized steps along that side #

IF ABS(Y Extent) GE ABS(X Extent)
THEN

N_Extent = 2 * CEIL(Y Extent/H Cell Dimension);
ELSE
" N_Extent = 2 * CEIL(X Extent/H Cell Dimension);
T Telp = T _Beg;
#Find increments along downstrean side for spacing of parallelf
#1lines to cover hold #
X Delta = X_Extent/N_Extent;
Y Delta = Y Extent/N_Extent;
FOR M = 0 TO M_Extent; #Step through the hold slong the time axis#
TTe-p-TTe-p-i-TCellD:lnuion,
FOR N = 0 TO N_Extent; #Step along the downstream sidef
X End = Xld + X ( Delta*N;
X Beg = X End - X1d + Xlu;
Y | "BEnd = Yid + Y _Delta®N;
Yneg-YEnd—Yld+Ylu,
CALL Determine _Independent Variable (T ' Temp IN, X End IN,
— Y _End 1IN, T _Temp IN, X End IN, Y hd IN, Cell L:lne
Parameters OUT, M Count OUTT
CALL Straight Line cenerato_('r End IN, Z Min IN, T_Beg IN,
T~z ,_Max IN, Subj Fl ._Id IN, Flag IN, Cell Line P Paranetero
IN, M Count IN, DUMMY OUT);
END Hold Area Protect,

2
.
'

[ ). SV

FIGURE 4-9
HOLD_AREA PROTECT (Concluded)

4-23

BTSN U

.‘!-41 -AAALI,




S o - . - il " . AN N T e Y e Y YA Y LY VT
..... ¥ a Dol St RN AR AL Yl s S e L N W LA AN AR CTL AT A A o i A R T St )

.

\LoT"e | ot

s

R
LR g .
rOLA L:L(k

>

.ﬁif

R

<

320k

s
A

oA

e LEGEND:
%
:., s=——=== Boundary of Hold

®O®0®® Lines Input to Straight Line Genmerator

-
Pl

AIAE
' e S

L !

. Sparse Cells Designated by Straight Line Generator

@) Buffer Cell

.
S
.

a

IS

FIGURE 4-10
OCCUPIED CELLS FOR A HOLDING PATTERN

oY

+

4-24

b

YO0
I MR

l'{\
F R I

2

AL
2l el

L T T e I N S S S S SRS - L T S R T Rt I I
A A T AT T T T e T e T S

-




N
»
t

..................

elements to update or insert additional records in the global
table SPARSE CELLS.

4.1.2 Buffer Cell Generator

$.1.2,1 Mission

The Buffer Cell Generator component of the Grid Chain Generator
outputs a shared local table of buffer cells using the sparse
cells of the current subject. When these buffer cells are
compared to the sparse cells of any other trajectory,
violations of separation can be ruled out if no overlap
occurs. It is sufficient that buffer cells include sparse
cells and all nearest diagonal and orthogonal neighbors of the
sparse cells to achieve separation assurance.

In addition to buffering with respect to cells, Buffer Cell
Generator determines vertical separation minima and maxima for
each buffer cell. It allows the identification of all
pertinent trajectory segments (used by the Fine Filter
subfunction of Flight Plan Conflict Probe).

4.1.2.2 Design Considerations and Component Environment

Input

The input to Buffer Cell Generator includes the global table
SPARSE CELLS, the subject aircraft's flight identifier, the
current tise, and the time horizon.

Output

The output is the shared local table BUFFER CELLS. Each buffer
ceil, like each sparse cell, must have in its record the
information needed to determine which segments of the subject
tra jectory are responsible for the occupancy of the cell.

4.1.2.3 Component Design Logic

The processing method of Buffer Cell Generator is given by the
PDL in Figure 4-11. 1Its calling sequence is as follows.

| Buffer Cell Generator |
| Decode
| Encode |

g

S 0

P C e
"ALL‘B_L‘""'
: e el

s
‘a’a



~\
Ay

bi]

LY

3

o
ok

3
p %
ROUTINE Buffer Generator;
e #Component of Cell Grid Chain Generator#
;:--:f PARAMETERS T Present IN, T Horizon IN, Subject F1 : ‘Id IN;
o REFER TO GLOBAL SPARSE ¢ E CELLS IN;
!:-.g: REFER TO SHARED LOCAL BUPFER CELLS OUT ;
Bex DEFINE VARIABLES
T Present Current time

27 T Horizon Current time horizon

'\3 Temp Node A temporary value for a node ID

N T _Cell Time at center of sparse cell in quantized cell
: 24 coordinates
e Y Cell Y point at center of sparse cell in quantized cell
coordinates

e X _Cell X point at center of sparse cell in quantized cell
< coordinates
N T Index for iteration on time
o Y Index for iteration on horizontal y

; X Index for iteration on horizontal x;

5

7 FIGURE 4-11

j::.: BUFFER_CELL GENERATOR

P

£ 3

e gy
'-A"'

Mo

Dy
S

-:.*

N2y

\ 4~26

R2Y

.
»

2 X

.“
~

- - }:-m F'.':‘.‘!;": R .‘::_._‘_ .--.‘_ \‘_;...' ST T

- N . I R




A
al

SRS 1y

Q‘-f',"

..'.‘

e
" REPEAT FOR EACH SPARSE CELLS RECORD
¥ WHERE SPARSE CELLS.fl 1d Pt} Subject Fl 1d;
- Temp Node = SPARSE CELIS.tree node Id;™
.3 CALL D;code (Temp_Node IN, T Cell OUT, Y Cell OUT, X Cell
._':: m
) ronT-ICeu-lro'rCeu+1,
, Il? (T GT T_Present AND T LE T_Horizon)
% T
w PORY Y Cell -1 T0 Y Cell + 1;
o PORX'XCell-lTOXCell-I-l'
by %4 T CALL Encode (T IN, Y. IN, X IN, Temp Node OUT),
#Check to see if the buffer cell is already in#
A #BUFFER CELLS. If it is, update its record.#
,-; #0therwise, create a record for it.#
§:: IF (COUNT(BUFFER CELLS.node id EQ Temp Node)) NE 0
) Im
2 UPDATE IN BUFFER_CELLS

zlin z = MIN(ain .z, SPARSE CELLS.min z),

v max z = MX(max z, SPARSE UELIS.max z),
Y entry time = HIN(entry time, SPARSE

e CELiSTentry time), exiT time = MAX(exit

".:: time, SPARSE CELLS.exit time)) | I

) A

WHERE BUFFER ( CEI.I.S.node id EQ Temp Node;

ELSE
~ INSERT INTO BUFFER _CELLS (node_id = Temp Node,

min z = SPARSE ( CELLS.min Lz, max z = SPARSE

CELILS .max L 2, entry time = SPARSE , CELLS.
A entry | time, exit tile = SPARSE CEI.Ls.ex:lt
W3 ti-e)s

END Buffer Cell Generator;

Y FIGURE 4-11
TN BUFFER_CELL GENERATOR (Concluded)

s 4-27




2
48
Buffer Cell Generator searches through the records of SPARSE
CELLS selecting out any record associated with the current
Nt subject flight identifier. The (integer) cell coordinates are
: obtained using a utility routine called Decode, which performs
W0 the inverse operation to Encode discussed in Section 4.1.1.3.
e Then, each of the three cell dimensions are processed in nested
. loops to create buffer cells at all positions situated within 1
al cell coordinate of the sparse cell. The nearest diagonal and
;; orthogonal neighbors of the aparae cell are thus selected as
Al buffer cells.
,‘ ]
ﬁ Then the various attributes of the sparse cell are transferred .
-t to the buffer cells. If the buffer cell is not represented in
v BUFFER CELLS, the sparse cell attributes (minimum altitude,
‘ maxisum altitude, entry time and exit time) are transferred
N directly to the buffer cell record along with the node
;q. identifier returned from Encode. If the buffer cell already
',:‘ exists, it 1s updated so that the buffer cell attributes have
hads the greatest necessary range. In this manner, the buffer cell
records, like the sparse cell records, provide vertical separa-
e tion assurance and the time information required by the Coarse
‘;j Filter.
w,'@
Wt 4.1.3 Grid To Tree Converter
. $.1.3.1 Mission
R
Nor The Grid To Tree Converter component of the Grid Chain
- T Generator uses applicable SPARSE CELLS and BUFFER_CELLS records
-:: to build the subject's sparse and buffer trees.
4.1.3.2 Design Consideration and Component Environment
fzq Before entering the Grid To Tree Converter component, the
o global SPARSE CELLS table and the (local) BUFFER CELLS table
Q) have been completed for the subject trajectory. O&rid To Tree
Converter takes the applicable node identifiers of the sparse
and buffer cells and generates the necessary node-parent -
A'&%: relationships to establish the tree structure. This
Ly facilitates the Coarse Filter's process of ruling out object
. ::}: trajectories that are well separated in space or time from the
o2 subject.
T Input
(A
'.::E]: The inputs to Grid To Tree Converter include the SPARSE CELLS
o and BUFFER CELLS tables and the subject flight identifier.
A

|

4-28

04

8

- . 4.8 K&

s_
g
5

o )
A

....................




-

s :-?'..:-_;1';.i'-'.'-"‘.-"ir.“v_-t B "v-. ~>._1

A

ﬁ OQutput
BV The outputs are the shared local tables SPARSE TREE and BUFFER
o TREE, which contain information necessary for tree manipula-

vl
.ﬁ tions.

4.1.3.3 Component Design Logic

The PDL representation of the Grid to Tree Converter is given
in Figure 4-12.

The Grid to Tree Converter component takes each record of the

. SPARSE CELLS table applicable to the subject and creates the
tree structure starting at the leaf level and working back to
the root.

All of the information needed for determining parentage 1is
contained in the cell identifier. This information 1s
extracted using the utility Get Parent. Consider the example
of a coordinate-to-node identifier mapping described in Section
4.1.1.3 and illustrated in Figure 4-7. For this mapping, Get
Parent would drop the rightmoat digit of a node identifier
(say, node 022 in Figure 2-4) to yileld the node identifier of
its parent (02).

Results, consisting of temporary node identifiers and the
flight identifier from the gparse cells, are incorporated in
the SPARSE TREE and the BUFFER _TREE tables.

4.2 Coarse Filter

The Coarse Filter component of Flight Plan Conflict Probe is
designed to reduce the number of object aircraft that need to
be analyzed by the Fine Filter for possible conflict with the
subject aircraft. It accomplighes this task by identifying the
aircraft that occupy the same general region in space and time
as the subject aircraft and eliminating all others from further
consideration. Specifically, the Coarse Filter 4invokes a
recursive routine called Nominee Detection. Nominee Detection
eliminates, at every stage of the recursion, all those object
aircraft whose trajectories do not occupy any of the blocks
that contain subject aircraft buffer cells. The algorithm
invokes 1itself to check each of the eight sub-blocks for
co-occupancy. It continues dividing co-occupied blocks and
eliminating non-neighboring object aircraft until the cell
level of the grid is reached. Thereupon, any object aircraft
occupying a buffer cell of the subject aircraft is tested for
an altitude separation violation with the subject aircraft for

4-29

.......

Lo ) L AT ot AT T e Tt e e e T A e e T e L e T T e S e e
. 'kz.lmh 0_1")&:- R VS VA NI N A I P A S R R S S SO PP T Y oal PP S YO A 1 W S S Y W,



s,
'.-

2
13-

o
‘::j'.: ROUTINE Grid To_Tree_Converter;
o #Component of Grid Chain Generator#

Oy PARAMETERS Subject F1 _Id IN;

REFER TO GLOBAL SPARSE CELLS IN, BUFFER CELLS IN;

. REFER TO SHARED LOCAL SPARSE TREE OUT, BUFFER TREE OUT, MAX LEVEL IN;
“ DEFINE VARIARLES - - T - -
oo Temp | Node Temporary storage of node_id

"k ) Temp_Child Temporary storage of ch:lld id

d Level Temporary tree level counter;

N REPEAT FOR EACH SPARSE CELLS RECORD

i WHERE SPARSE CELLS. fl 1d Q Subject F1 Id;
52 Temp_Child = SPARSE_CELIS.tree node 1d;
.\"‘ FOR Level = Max Level T0 03

e CALL Get | Parent ('l'enp Child IN, Level IN, Temp Node OUT);
%ot INSERT INTO SPARSE_TREE (f1 1d = SPARSE CELIS.fl 1d,
e node id = Temp Node, child id = Temp Child);

- Temp_( Child = ‘l'enp Node;

N ) REPEAT F(R EACH BUFFER ( CELLS RECORD;
] Telp Node = BUFFER_( CELLS .node 1a

N FOR Level = Max Level T0 0;
\,4 " CALL Get Parent (Temp Child IN, Level IN, Temp Node OUT);
INTO BUFFER_TREE (node 1d = Temp_Node,
, child id = Temp (  Child);
~3‘ Temp ( Child = Temp ] Node;
: END Grid To _Tree Converter,

-— FIGURE 4-12
" GRID_TO_TREE_CONVERTER

ate 4-30

AR _*. I SRy




ey
LM

b | AP
;s‘ = ’l<

f
o

0}
a

N AR
PRI

-~ - .
iy e AL A % e T A
h *;ﬁﬂ’mj"m&‘:’{k-"!.‘-.5.._1'2‘_‘:&'."..;_'.

these cells. This test is performed by invoking the element
Nominee Detection Altitude Test. Those object aircraft for
which this test 1indicates & violation of the vertical
separation criterion are identified as nominees. The nominees
are passed on to the Fine Filter where a more thorough analysis
involving the segments of the conflicting aircraft is conducted.

Figure 2-3 shows the planning region grid and the eight
sub-blocks of each stage of this routine. As indicated in
Section 2.1.8, octal tree data structures are used to represent
the planning region blocks and cells occupied by the subject
and object aircraft.

Figure 4-13 1illustrates the Coarse Filter organizational
hierarchy. Flight Plan Conflict Probe calls the Coarse Filter
which, in turn, invokes Nominee Detection, its single compoment.

4.2.1 Nominee Detection

4.2.1.1 Mission

The purpose of this component of the Coarse Filter 1s to
identify all cells within the planning region's
three-dimensional (x,y,t) grid which are buffer cells of the
subject aircraft and are occupied by at least ome object
aircraft, For each subject-object aircraft pair so identifiled,
an altitude check is performed to determine if the altitude
ranges (minimum to maximum) of the aircraft over the cell are
such that the aircraft may violate the vertical separation
criterion. This test 1is performed by invoking the element
Nominee Detection Altitude Test. Those object aircraft that
are found to violate this criterion with the subject aircraft
are labeled nominees and are placed in the NOMINEES table and
passed to the Fine Filter for further processing.

4.2.1.2 Design Considerations and Component Environment

Input

The information supplied to the Nominee Detection algoritha
consists of parameters, global data, and shared local data.
The parameters comsist of Current Node Id, Level, Test_Time
Begin, and Test_Time End. The Current Node Id 1s used in the
recursion to identify the node being processed (in preorder) at
a given level of the recursion. The parameter level identifies
which level of recursion 1s currently being processed.
Test Time Begin and Test Time End are used to limit the scope
of the search, The algorithm will search only those blocks

4-31

............

...........

........ ¥

) ’-‘."- _\-.‘- ..’..\ "




.
Ky
Eh s 3
(3
, ;}E
L]

29
e

It

ARSI
.."."‘I‘\
48 0 4
ErLSE

a

{
[

. & b L
. D{.Q.’.' ,. ‘.
PR P

) (NN
oy oyl Vy
PN e
a B 9 3 - -

XN
G‘l

>
--'.

FPCP

COARSE FILTER

Section 4.2

NOMINEE DETECTION

Section 4.2.1

FIGURE 4-13
COARSE FILTER ORGANIZATIONAL STRUCTURE

4-32




whose time interval overlaps with these test times. For
example, 1f the Coarse Filter 1is called because of a horizon
update with Test_Time Begin equal to the previous time horizom
and Test_Time_ End equal to the new time horizon, there 1is no
need to check blocks associated with times outside of this
interval.

The shared local tables and variables input into the algorithm
are the ALLOBJECT TREE, BUFFER_TREE, BUFFER CELLS, Max Level,

Real Subject F1 . .d, and Trial Flag. ALLOBJECT TREE and BUFFER

TREE are tables which define the structure of the trees. These
tables contain a record for each parent-child relationship in
the tree. When the preorder traversal reaches a record
including a leaf node (always as a child), the leaf (child)
identifier is used to reference the corresponding cell data in
BUFFER CELLS. This information 18 wused to provide the
information on the subject aircraft segment in that cell to the
NOMINEES table. The global table SPARSE CELLS provides the
corresponding data for the leaf level of the ALLOBJECT TREE.
Max Level defines the maximum level of division used to reach
the leaf level. The variable Trial Flag is set to TRUE if the
call to Nominee Detection is due to a trial probe and to FALSE
otherwise. In case of a trial probe, the variable Real_

Subject_Fl Id contains the flight identifier of the flight
being probeoo This is used to avoid detecting potential
conflicts of the trial trajectory and the actual trajectory of
the flight being trial probed. (Real Subject Flight Id is not
used for a trajectory update or a horizon update.) Finally the
global variable Current Time is used to limit the search to
cells that correspond to those portions of trajectories that
occur in the future.

Outgut

The output of the Nominee Detection algorithm is the shared
local NOMINEES table which contains the following information
for each subject buffer cell occupied by an object (nominee):

1. the flight identifier of the nominee aircraft

2. the node identifier of the airspace cell where the
co—oCCcUpancy occurs

3. the subject entry time and subject exit time, which
specify the t coordinates of two cusps on the
subject's trajectory: a) the earlier cusp on the
earliest segment which csuses the cell to be declared
occupied by the subject and b) the later cusp on the

4-33

EI GO P




.J‘L.}.').

[}
A

'.'4.'."{1'

P A
AN

k]

3

latest segment which causes the cell to be declared
occupied by the subject

4. the nominee entry time and nominee exit time, which
specify the t coordinates of two cusps along the
nominee's trajectory, defined as in 3a and 3b above

4.2.1.3 Component Design logic

Nominee Detection 1is a recursive algorithm which wuses
preordering to traverse (in parallel) those branches which
occur in both BUFFER TREE (which reflects the trajectory of the
subject aircraft) and ALLOBJECT TREE (which reflects the
trajectories of all of the objects). A description of tree
traversal methods is given in Appendix C. Each call to Nominee
Detection considers a node that occurs in both trees, which is
input as Current Node Id. On the first call to Nominee
Detection, this node is the root of both trees. The Current_
Node 1d i1s used as a key to locate records corresponding to its
children in both trees. Only children common to both trees are
considered.

Two time tests are performed. First a check to see if the time
intervals associated with the current child block exceeds
Current Time. If so, testing for this child ends, since the
aircraft has already passed this point in time. Next, the
Test Time Begin and Test Time End are tested against the given
block's time intervals to see if they overlap.

For each pair of children satisfying the above conditioms,
Nominee Detection calls itself with the child id of the
subject's tree as the new Current Node Id. At every stage of
the recursion, the algorithm also checks to see if the cell
level (i.e., Max Level) has been reached. If it has been
reached, then the algorithm locates and retrieves the segment
data for the subject in BUFFER CELLS. Included in this data
are the minimum and maximum altitudes attained for the
segment. Next, the algorithm 1locates, iteratively, each
SPARSE CELLS record of every object aircraft co-occupied with
the subject in the cell and retrieves the corresponding segment
data for that aircraft. For the current object aircraft, a
comparison is made of its altitude range in the cell with that
of the subject aircraft. 1If the vertical separation between
the aircraft is less than that required by the vertical
separation criterion, then the object aircraft is labeled a
nominee and the NOMINEES table is updated with the appropriate
data. The test for vertical separation 1is performed by the

4-34




-
-
e

DR

L% .Y % Ny e
2> &7 (.‘I."."..

' 45 a"J‘J

[
PR}

B
e

.‘ ‘a."::ﬁ‘_s

> -.":\'f-\."x

-

>
* >0
s &«

S

9 '%

ref b

154

\
..-.-

4

- L

.......................................

Nominee Detection Altitude Check element. Figure 4-14 gives
the PDL for the Nominee Detection component.

Nominee Detection Altitude Check

The Nominee Detection Altitude Check element performs a test to
determine whether or not the subject and object (candidate for
a nominee) segments violate the vertical separation criterion
Vert Sep. The algorithm first determines whether or not the
maximum altitude attained by either alrcraft segment is larger
than 29,000 feet. If so, the vertical separation criterion
Vert_Sep 1is set equal to the global parameter Sepz Hi;
otherwise, it is set equal to Sepz_Lo.

Finally, the algorithm determines 1if the 'vertical distance
between the segments is within Vert Sep. If it 1s, the status

18 set to a "nominee” status; otherwise, it 1s set to a "no

noainee” status.

Figure 4-15 is a PDL representation of the Nominee Detection
Altitude Check element.

4.3 Fine Filter

The Fine Filter component of Flight Plan Conflict Probe
identifies the encounters of a particular subject aircraft from
the data in the aircraft's NOMINEES Table. Unlike the Coarse
Filter, which is essentially a search and copy subfunction, the
Fine Filter involves detailed mathematical analyses conducted
on aircraft segments. (The word “segment”™ in the following
paragraphs will be used to denote either a regular segment or a
cusp pair representing entry and exit points of a holding
pattern or vertical maneuver.)

The first task of the Fine Filter algorithm is to create a list
of subject-nominee segment palirs consisting of those subject
and nominee segments which are assoclated with a co-occupied
cell identified in NOMINEES. Each such pair 1is compared to
those segment pairs previously analyzed by the Fine Filter for
possible repetition. The objective of this test 1s to assure
that no segment pair undergoes the same mathematical analysis
more than once. If the segment pair has not yet been
processed, the segments are tested for possible overlap in time
by the Time Check component. Those segments that overlap are
checked by the Altitude Check component for possible violation
of the vertical separation criterion. If violation 1is
detected, the segments are tested by the Horizontal Check
component, within their common time interval, to determine

4-35

B S dech il IS S et Aelhulacn

e -

B e SR




7

e ROUTINE Nominee Detection;

~rwy PARAMETERS Current Node Id IN, Level IN, Test Time Begin IN, Test
s Time End IN;

T4 REFER TO SHARED LOCAL ALLOBJECT TREE IN, BUFFER TREE IN, BUFFER_
T CELIS IN, NOMINEES OUT, Max Level IN, Real Subject F1 Id IN,

;:Ir Trial Flag IN;

7 REFER TO GLOBAL SPARSE CELLS IN, CURRENT TIME IN;

3 DEFINE VARTABLES - - - -

o Current Node Id Identifier of the current root of the

SN subtree being traversed

Yo Level Current level of the root of the subtree in
:-::i the parent tree

oy Test_Time Begin Time at which testing for co-occupancy begins
) Test_Time End Time at which testing for co-occupancy ends
s~ Subject Min 2 The lowest altitude through which this
el flight plan trajectory passes in this cell
W Subject Max Z The highest altitude through which this

5::-4 flight plan trajectory passes in this cell
< Subject Entry Time Cusp which precedes entry into this cell

Subject Exit Time  Cusp which follows exit from this cell

% Status An indicator used to specify whether a given
-j-‘;‘;j object aircraft is or is not a nominee;
S FIGURE 4-14

@ NOMINEE DETECTION

v

SRS
20

)

R

s
o

g
o 4-36

Ot
S
i
¥ Q’

¢

'r.'-..' Vi Y YRR LY N ‘,\*\“\‘"\'-.'-.

*




QRO WS

SO

g AT Y R EA SR At e, 8
L Pl 4l iyl Al e 2

IF Level LT Max Level
THEN
REPEAT FOR EACH BUFFER TREE RECORD
or each child of a node, & record exists with node 1d as#
#first field and child 1d as second field#
WHERE BUFFER TREE.node 1d EQ Current Node Id;
IF the time Interval associated with the Current Node_ld
is in the interval (Test Time Begin,Test Time End)
AND CURRENT TIME.time does not exceed this time interval
THEN #check for matching child block in the ALLOBJECT treef
if match then blocks are co-occupiedf
IF COUNT(ALLOBJECT TREE.node id EQ Current Node Id AND
ALLOBJECT_TREE.chiId id EQ BUFFER_TREE.chiTd 1d) NE O
THEN #child was found, check next level in pre-order,#
#to find which cells are co-occupied with the subject#
CALL Nominee Detection(BUFFER TREE.child id IN, Level+l
IN, Test_Time Begin IN, Test Time End IN);
EISE #at the leaf level (cell level) of both trees,#
#determine all objects in the cell to be considered nominees;#
#get altitudes and segments in this cell for the subject#
SELECT FIELDS min z, max z, entry time, exit time
INTO Subject Min Z, Subject Max Z, Subject Entry Time,
Subject Exit Time
FROM BUFFER_CELLS
WHERE BUFFER CELLS.tree node id Current_Node Id;
REPFAT FOR EACH SPARSE CELLS RECORD #for each co-occupied object#
WHERE SPARSE CELLS.tree node id EQ Current Node Id;
#if this is a trial probe, ignore the real subject#
IF ((Trial Flag EQ FAISE) OR (Trial Flag EQ TRUE AND
SPARSE CELLS.F1 Id NE Real Subject F1 1d))
THEN #test for altitude violation between aircraft#
CALL Nominee Detection Altitude Check (Subject Min Z,
Subject Max Z, SPARSE CELLS.min z, SPARSE CELLS.max z,
Status);
IF Status = 'nominee’
THEN #this object 1is nominee, add segments for the subject#
#and this object to the Nominee table#
INSERT INTO NOMINEES
ZFl_id = SPARSE CELLS.Fl id, node id = SPARSE
CELLS.tree node id, subject entry time ™ Subject
Entry Time, subject exit time = Subject Exit Time,
ncminee entry time = SPARSE CELLS.entry time,
nominee exit time = SPARSE CELLS.exit_time);
END Nominee Detection;

FIGURE 4-14
NOMINEE DETECTION (Concluded)

4-37

B, BTN . SSPPPANAO)

SRR I




-

DALY
)

‘g

i

e
=3

{ 21 G
_;"j\;:'_. 'Jk)' N

,.i-_ 1

-
N

) L2 |0

e,

ROUTINE Nominee Detection Altitude Check;

#this routine determines 1f the required vertical separationf
#distance is maintained between two aircraft in a given cell#

PARAMETERS Subject Min Z IN, Subject Max Z IN, Object Min Z IN,
Object Max Z IN, Status OUT;

REFER TO GLOBAL Sepz_Hi 1IN, “Sepz_Lo IN;

DEFINE VARTABLES

Vert_Sep Vertical separation criter:l.on
Subject Min Z The lowest altitude through which subject's flight
plan trajectory passes in this cell
Subject Max Z The maximum altitude through which subject's
flight plan trajectory passes in this cell
Object Min Z The lowest altitude through which object's flight
plan trajectory passes in this cell
Object Max Z The maximum altitude through which object's flight -
plan trajectory passes in this cell
Status An indicator used to specify whether a given object
.aircraft is or is not a nominee;
#determine required vertical separationf
#1If the maximum altitude of e’ther aircraft exceeds the altituded
fat which the minimum separation requirement changes, set the#
fmaxisum distance#
IF MAX (Subject Min Z, Subject Max Z, Object Min Z, Object Max Z)
T GT 29000 feet
THBN
~ Vert _Sep = Sepz_Hi;
ELSE
Vert _Sep = Sepz_Lo;
fdetermine if the vertical distance between segments in the cell#
#are in violation#
IF (MAX (Subject Min Z, Object Min Z) ~ MIN (Subject Max 2,
objcct Min Z)) LT Vert Sep

§tatu¢ = ‘nominee’;
ELSE
Status ™ 'no nominee’';

END Nominee Detection Altitude Check;

FIGURE 4~15
NOMINEE_DETECTION ALTITUDE TEST

4-38




A 2 A A RN R S S AL Y N S B N A N R )

- ’-"1“ .

ALY

‘_
s NN

AT

L
A A

whether or not the horizontal separation of the aircraft 1s
less than the advisory separation criterion (Advisory Seph)
and, if so, whether or not it is also less than the priority
separation criterion (Priority Seph). The component
distinguishes between regular segments and segments assoclated
with a holding pattern or vertical maneuver in its calculation
of the distance separating the two aircraft. If a violation of
the advisory separation criterion is detected, an entry is made
in the ENCOUNTERS Table by the Encounter List Builder
describing details of the event. .This table includes encounter
data for all of the aircraft in the planning region.

et S

s’ -':": ',,a".‘ .

Once all segment pairs associated with a co-occupied cell have
been tested, the Fine Filter repeats the entire process for the
next co-occupied cell, ete., until all cells are processed.

Figure 4-16 1llustrates the Fine Filter organizational
hierarchy. Flight Plan Conflict Probe invokes the Fine Filter-
after the Coarse Filter, whereupon the Fine Filter calls its
various components 1in tandenm.

Figure 4-17 contains a glossary of the local variables and
tables which are common to at least two components of the Fine
Filter. It should be used as a supplement to the PDL
descriptions of the various aigorithms provided in the figures
of Section 4.3.

Figure 4-18 is a PDL presentation of the Fine Filter component.

4.3.1 Segment Pair Builder

4.3.1.1 Mission

The mission of the Segment Pair Builder is to organize the
subject aircraft and nominee aircraft cusps in the global data
base TRAJECTORIES into subject-nominee segment pairs that are
associated with each co-occupied cell identified by the Coarse
Filter.

4.3.1.2 Design Considerations and Component Environment

Inggt

The inputs to the Segment Pair Builder Component include the
unique identifiers for the subject and nominee aircraft trajec-
tories, Subject F1 Id and Nominee F1 Id, respectively, and the
times of the first and last subject aircraft and nominee
aircraft cusps associated with a co-occupied cell. These times

4-39

................. + ™ a " . T . PR T S
LR I A T U P A e A, LT, T, . .
R A e e . R .
N A S I o S o



d'.-
»
-
‘JN
-

448 Sl
". '.-fl A.L.

>

)

[+,
.

41, [

., e

l. ‘.

.“".l

A

B

.
+

1R

(R e
A
W S W

FPCP

FINE FILTER

Section 4.3

B

SEGMENT
PAIR
BUILDER

TIME CHECK

ALTITUDE
CHECK

HORIZONTAL
CHECK

ENCOUNTER
LIST
BUILDER

Section 4.3.1 Section 4.3.2 Section 4.3.3 Section 4.3.4 Section 4.3.5

FIGURE 4-16
FINE FILTER OCRGANIZATIONAL STRUCTURE

4-40




B
LY

-
18]
p
-
-

y Sttty

AP

3
-8

P

2L

PR
LR

g

PEPL ML L

L, LLf

). el

g PR

Advisory Time Viol End
Advisory Time Viol Start

Msep Dist
Nominee F1 Id
Nominee Viol End Pt

y
z

Nominee Viol Start Pt

y
z

Priority Time Viol End

Priority Time Viol Start

Subject F1 Id

Subject _Viol End Pt

NN

VARIABLES

Latest time that the advisory
horizontal separation criterion is
violated

Earliest time that the advisory
horizontal separation criterion 1is
violated

Minimsum separation distance between the
aircraft in the horizontal plane

Unique identifier for the flight plan
of the nominee aircraft

Spatial coordinates of the noainee
aircraft at the end of the advisory
violation
X coordinate
Y coordinate
Z coordinate

Spatial coordinates of the nominee
aircraft at the start of the
advisory violation
X coordinate
Y coordinate
Z coordinate

Latest time that the priority
horizontal separation criterion is
violated

Earliest time that the priority
horizontal separation criterion is
violated

Unique identifier for the flight plan
of the subject aircraft

Spatial coordinates of the subject
aircraft at the end of the advisory
violation
X coordinate
Y coordinate
Z coordinate

FIGURE 4-17

FINE FILTER GLOSSARY

4-41




Subject Viol Start Pt Spatial coordinates of the subject

aircraft at the start of the
advisory violation

b
el
}:“:-
e Ly
b
»

-

Y)
hd

. x X coordinate
K y Y coordinate
"o z Z coordinate
2 Time Msep Time of minimum separation between the
w‘{k, aircraft in the horizontal plane
; Time Overlap Max Latest time that the subject and
s nominee segments overlap in time
ot Time Overlap Min "Earliest time that the subject and
0 iﬁ nominee segments overlap in time
P,
o
b
,?Q TABLES
2N
,"2: NOMINEE SEGMENT Pair of cusps representing the nominee
',.;‘-.1 segment being processed
e first t ' Time of the first cusp
e first x X coordinate of the first cusp
7 first y Y coordinate of the first cusp
Y, first =z Z coordinate of the first cusp
3 first _cusp_type Cusp type of the first cusp
i second t Time of the second cusp
" second x X coordinate of the second cusp
N second y Y coordinate of the second cusp
Ao, second 2z Z coordinate of the second cusp
i second_cusp_type Cusp type of the second cusp
2 first _point AGGREGATE (first x, first y, first z)
Ay second_point AGGREGATE (second x, second y, second z)
— first_xy _pair AGGREGATE (first x, first y)
. second xy pair AGGREGATE (second x, second y)
A hz first vtx AGGREGATE (first x,first y)
X hz_sec_vtx AGGREGATE (second x,second y)
i
NS
£ FIGURE 4-17
. FINE FILTER GLOSSARY (Continued)
5
S08
>
N
A4 4-42
o
ALY
1]
34
Ay
&

LSRR Lt QAR R
L 0§ C ¢ "

............



AR LN

FAANA

T R e (.Y

LW

: ‘i
o~ +
2%aa® -~

(A

«
a¥sts

NAAA

X3

o

e

Ve a¥a” s a ik

SEGMENT PAIR LIST

subj first ¢
subj_first x
subj_firsq;y
subj first z
subj_firs;_cusp_;ype
subj second t
subj second x

subj second y
subj second z

nominee first t
nominee first X
nominee first y
nominee first z
nominee first cusp_
type
nominee second t
nominee second x

nominee second y
nominee second z

nominee second cusp
type

Table containing the subject and

nominee segment pairs for a
co~occupied cell identified by the
Coarse Filter
Time of subject's first cusp
X coordinate of subject's first cusp
Y coordinate of subject's first cusp
Z coordinate of subject's first cusp
Cusp type of subject's first cusp
Time of subject's second cusp
X coordinate of subject's second
cusp
Y coordinate of subject 8 second
cusp
Z coordinate of subject's second
cusp
Time of nominee's first cusp
X coordinate of nominee's first cusp
Y coordinate of nominee's first cusp
Z coordinate of nominee's first cusp
Cusp type of nominee's first cusp

Time of nominee's second cusp

X coordinate of nominee's second
cusp

Y coordinate of nominee's second
cusp

Z coordinate of nominee's second
cusp

Cusp type of nominee's second cusp

subject_segment AGGREGATE (** first 10 fields **)
noaminee .  segment AGGREGATE (** last 10 fields **)
subject nominee segment_pair AGGREGATE (** all 20 fields **)

SUBJECI_SEGHENT

Pair of cusps representing the

subject segment being processed;
fields defined like NOMINEE

SEGMENT above

FIGURE 4-17

FINE FILTER GLOSSARY (Concluded)

4-43

SRS S LSS (EYL % s e e e e L




- —r— te e 2t n £ o San die Sund Tnia e i B et Tt e Tt St S el R
----- P e R L TG T T IR AT WA N T N

X ROUTINE Fine Filter;
N S Subject F1 Id IN;
TO GLOBAL ENCOUNTERS INOUT, PRIOR_ENCOUNTERS OUT;
REFER TO SHARED LOCAL NOMINEES IN;
, DEFINED IN GLOSSARY
4 Subject FI _
Time Overlap Min
W Time Overlap Max
"‘ Advisory_Time Viol Start
- Advisory_Time Viol End
3‘:; Priority Time Viol Start
3 Priority Time Viol End
o Time Msep
Mgep Dist
SEGMENT PAIR LIST;
DEFINE VARTABLES
Status Variable indicating the outcome of a
particular Fine Filter test;

DEFINE TABLES
PROCESSED SEGMENT Subject-nominee segment pairs
PAIR LIST previously processed by the Fine
Filter; fields defined like
SEGMENT PAIR LIST in Glossary;

FIGURE 4-18
FINE FILTER

444

...........
...........




AAAy

.{_‘

i)
-
Fat

t N

# produce copy of ENCOUNTERS Table for Sector Workload Probe #
PRIOR_ENCOUNTERS = ENCOUNTERS;

# repeat for each co~occupied cell identified by the Coarse Filter #
REPEAT FOR EACH NOMINEES RECORD;

¥ organize cusps into subject-nominee segment pairs #

CALL Segment Pair Builder (Subject F1 Id IN, NOMINEES.f1l id IN,
NOMINEES .subject entry_time IN, “NOMINEES . subject exit time IN,
NOMINEES .nominee entry | ’ time IN, NOMINEES .nominee exit _time IN,
SEGMENT PAIR LIST OUT),

REPEAT FOR EACH | SEGMENT PAIR LIST RECORD;

WHERE SEGMENT PAIR LIST.subject nominee segment pair IS NOT IN
" PROCESSED SEGMENT PAIR _ LIST; # repeat only for subject- ¥
# nominee segment pairs not previously processed

INSERT INTO PROCESSED SEGMENT PAIR_LIST
(subject nominee segment _pa:lt = SEGMEN'I PAIR LIST.subject
nominee Segment pair);

# conduct tests of the subject-nominee segment pair in the #

# various dimensions

CALL Time Check (SEGMENT PAIR LIST.subject segment IN,
SEGHENT PAIR ] LIST.nominee segment IN, Status OUT, 'l‘ime
Overlap Min OUT, Time Overlap Max OUT);

IF Status EQ 'Time intervals overlap'

THEN

CALL Altitude Check (SEGMENT PAIR LIST.subject segment IN,
" SEGMENT_PAIR_LIST.nominee segment IN, Status OUT);
IF Status EQ 'Violation -¢ vertical separation criterion'

EALL Horizontal Check (SEGMENT PAIR LIST.subject segment
IN, SEGMENT ] PAIR LIST.nominee segment IN, Subject F1_
Id IN, NOMINEES.fl . 1d IN, Time Overlap Min IN, Time
Overlap Max IN, Status OUT, Advisory Time Viol Start
our, Advisory Time Viol End OUT, Priority ’rime Viol
Start ouT, Ptiority Time Viol Es . End QUT, Time Msep OUT,
Msep DIst OUT);

IF Status EQ "Violation of advisory horizontal separation
criterion’

THEN # store the encounter data in a table #

CALL Encounter List Builder (SEGMENT PAIR LIST.
subject segment IN SEGMENT PAIR ] LIST. nominee
segment IN Subject Fl 1d IN, NOMINEES. £f1 id IN,
Advisory Time Viol Start IN, Advisory Time Viol
End IN, Priority Tine Viol | . Start IN, Priotity Time
Viol—fnd IN, Time Msep IN, Msep Dist IN);

END Fine Filter;

FIGURE 4-18
FINE FILTER (Concluded)

445

", A - e e A AT e a® T Tt et et eT e Y eyt - . ~ e N - e e LT
'*"0’ 'l‘; \‘\".\.".'l.\ \ ‘.".\.'_.'.\" -.-.'-‘v.. -‘~ .- e -.\-.- St N -, N S SO L

WPLPOPLALT 1 H S B B AT > |

P,

T 1 e v 4 .
PATSAIS - N



RN | SRk

0
o 0‘,‘_'..:“

UL WS

6.{-."-.'1: iy

DU

AR

0y 20l

)

are denoted by the local variables Subject Entry Time, Subject_
Exit Time, Nominee Entry Time, and Nominee Exit Time. In
addition to all of these variables which are provided by the
Fine Filter routine, the Segment Pair Builder Component uses
the global table TRAJECTORIES from which it obtains the cusp
information for the two aircraft.

Output

The output of the Segment Pair Builder Component is a table,
SEGMENT_PAIR LIST, which contains 1in each record a pair of
segments, one from each aircraft, that are associated with a
specific co-occupied cell identified by the Coarse Filter,
Each segment in a record is a pair of cusps. The subject
segment and the nominee segment in each record are passed on to
other components of the Fine Filter for specific testing.

4.3.1.3 Component Design Logic

The Segment Pair Builder component is called by the Fine Filter
for every co-occupied cell in the NOMINEES Table., Using the
parameters Subject Entry Time and Subject Exit Time (obtained
from this table) to identify the subject cusps associated with
the cell, it selects these cusps from the TRAJECTORIES Table
and sorts them in increasing order of time. Every consecutive
pailr of cusps in the resulting list represents a segment in the
trajectory of the aircraft. The component then repeats the
process for the nominee cusps associated with the same cell.
Finally, it combines subject and nominee segments from each
1list into pairs, storing every possible combination in a local
table called SEGMENT PAIR LIST.

Figure 4-19 shows the PDL representation of the Segment Pair
Builder algorithm.

4.3.2 Time Check

4.3.2,1 Mission

The mission of the Time Check component of the Fine Filter is
simply to determine if the pair of segments under consideration
overlap in time and, if so, to calculate the endpoints of the
common time interval.

4-46

...............
........

- MY .. ., . » a SEmmET) 5 2 £ .2 ¥ FEEES. LAY - I P



AD-A136 ;95 AUTOMATED EN ROUTE RIR TRAFFIC CONTROL ALGORITHMIC

SPECIFICATIONS YOLUME 3. . (U) FEDERAL AVIATION
ADMINISTRATION WASHINGTON DC SYSTEMS ENGINEE?/G
172/7

UNCLASSIFIED MW P NIEDRINGHAUS ET AL. SEP 8%

i~




2y Tt vt S e A JIE A N NI e e A S A IR B e i oS
i
s

o
EE

FEEECEE

"EFEE
EEF

.
8

TR
1.6

22 s e W

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




ROUTINE Segment Pair _Builder;

PARAMETFRS Subject Fl Id IN, Nominee F1 Id IN, Subject Entry Time IN,
Subject Exit Time IN Nominee Entry Time I IN, Nominee Exit " Time IN,
SEGMENT PAIR LIST OUT-

REFER TO GLOBAL TRAJECTORIES IN;

DEFINED IN GLOSSARY
Subject | Pl Id
Nominee Fl 1d
SEGMENI_BAIR_LIST;

DEFINE VARIABLES
Ordered Subject

Cusps (*,5)
Subject Entry Time

Subject Exit Time
Subject_Cusp Count
Ordered Nominee
Cusps (*,5)
Nominee Entry Time
Nominee Exit Time
Nominee Cusp_Count

I
J

Array whose rows are subject cusps
ordered according to increasing time

Time of the first subject aircraft cusp
associated with the co—occupied cell

Time of the last subject aircraft cusp
associated with the co—occupied cell

Total number of rows in Ordered_
Sub ject_Cusps

Array whose rows are nominee cusps
ordered according to increasing time

Time of the first nominee aircraft cusp
assoclated with the co-occupied cell

Time of the last nominee aircraft cusp
associated with the co—-occupied cell

Total number of rows in Ordered_
Nominee Cusps

Row index for Ordered | Subject_Cusps

Row index for Ordered Nominee (  Cusps;

FIGURE 4-19

SEGMENT PAIR BUILDER

4-47




# select the subject cusps that are associated with the co-occupied #
# cell and order them by increasing time #
SELECT FIELDS cusp, cusp_type
FROM TRAJECTORIES
INTO Ordered Subject Cusps
WHERE (TRAJECTORIES.f1 1d EQ Subject F1 Id) AND
(TRAJECTORIES. time GE Subject_Entry ' Time AND
TRAJECTORIES.time LE Subject Exit Time)
ORDERED BY TRAJECTORIES.time
COUNT (Subject_Cusp_Count);

# select the nominee cusps that are assoclated with the co-occupied #
# cell and order thea by increasing time #
SELECT FIELDS cusp, cusp_type
FROM TRAJECTORIES
INTO Ordered Nominee Cusps
WHERE (TRAJECTORIES. f1 1d EQ Nominee F1 Id) AND
(TRAJECTORIES. time GE Nominee Entry Time AND
TRAJECTORIES .time LE Nominee Exit Tile)
ORDERED BY TRAJECTORIES.time
RETURN COUNT (Nominee Cusp Count);
# construct a table of subject-no-inee segment pairs associated #
# with the co-occupied cell #
FOR I = 2 TO Subject_Cusp Count;
FORJ = 2 T0 Nominee Cusp Coumnt;
~ INSERT INTO SEGHENT PAIR LIST
subject_segment = Ordered Subject Cusps(I-1,*) CONCAT
Ordered Subject Cusps(I,* ), nominee :_gegment = Ordered
Nominee Cusps(J-1,*) CONCAT Ordered Nominee Cusps(J,*));
END Segment | Pair Builder;

FIGURE 4-19
SEGMENT PAIR BUILDER (Concluded)

..............................................
..................
---------




STk 2 Sk S A vuk T e S R T YTV ST T TR L O UL U IR LS R T AT AT T T T T T A
oLl ~ T
-
4
:)
o'

"L

LA

,Y,

4.3.2.2 Design Considerations and Component Environment

Input

The inputs to the Time Check component are two tables, the
SUBJECT_SEGMENT and the NOMINEE SEGMENT, which are obtained
from the SEGMENT_PAIR LIST created by the Segment Pair Builder
Component. The tables contain data describing the subject and
nominee segments under consideration.

30 WYV YA

LAY
R =

Qutput

The output of this component consists of a variable called
Status which indicates whether or not the time intervals of the
two segments overlap and two parameters, Time Overlap Min and

Qe

x4

{‘.: Time Overlap Max, which are the bounds of the common interval,
o 1f such an interval exists.
f_-a

N 4.3.2.3 Component Design Logic

. The Time Check Component is called by the Fine Filter for each
o~ subject-nominee segment pair not previously processed by the
'; Fine Filter. It establishes whether or not the two segments

. under consideration overlap in time simply by determining 1f
either the subject aircraft segment occurs entirely before the
nominee segment or, conversely, the nominee segment occurs
entirely before the subject ailrcraft segment. If either case
i is true, Status is assigned a message indicating that the time
' intervals do not overlap. Otherwise, it is assigned a message
) designating that an overlap exists. The beginning and end of
the overlap is computed by finding the latest starting time and
earliest ending time, respectively, of the two segments.

Figure 4-20 is a PDL presentation of the Time Check Algorithm.

4.3.3 Altitude Check

4.3.3.1 Mission

The purpose of the Altitude Check Component of the Fine Filter
is to analyze those segment pairs that pass through the Time
i’ . Check for possible violations of the vertical separation
p) criterion by their respective aircraft.

4.3.3.2 Design Considerations and Component Environment

If either aircraft 1is transitioning 1in altitude over 1its
segment (this may include an aircraft in a holding pattern with

4-49 g




----------

! [ 1""‘):.

o

ROUTINE Time Check;

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Status OUT,
J Time Overlap Min ouT, Time  Overlap | Max OouT;
2 DEFINED IN GLOSSARY ~
Time Overlap Min
P, Time Overlap Max
» SUBJECT_SEGMENT
3 NOMINEE_SEGMENT ;
it DEFINE VARTABLES
Status Variable indicating whether or not the subject and
nominee segments overlap in time;
# check to determine if subject segment ends before nominee segment #
# begins or nominee segment ends before subject segment begins #
1F SUBJECT_SEGMENT.second t LE NOMINEE SEGMENT.first t OR
NOHINEE_SEGMENT.seconq_; SUBJECT _ " SEGMENT. first t
THEN
Status = 'Time intervals do not overlap';
ELSE
Status = 'Time intervals overlap'; A
# calculate the endpoints of the overlap in time #
Time Overlap Min = MAX (SUBJECT_SEGMENT.first t,
NOMINEE_SEGMENT.first_t);
Time Overlap Max = MIN (SUBJECT SEGMENT.second t,
NOHINEE SEGMENT.second | t);
END Time ¢ Check;

L SN

£
'.-I. - D.d

O
PPy

A

§ A

FIGURE 4-20
TIME CHECK -

e

H

4-50

hS ) O A




e ne pd ek Rt i i ance IPAraUFL AL L IEIREIEE

e B gey J PAFRFh

vertical extent), the subject-nominee segment pair 1is
automatically considered a candidate for the Horizontal Check
Component without further testing by the Altitude Check
Component. Detailed analysis of such segment pairs by this
component 1is considered infeasible given the relatively small i
number of cases expected to be eliminated from such an i

el
Popp— -

8

L
-4, o4

v

apalysis. For all practical purposes, the Coarse Filter
prefiltering of transitioning aircraft in the vertical
dimension seems sufficient.

Inggt

The data to be input into the Altitude Check Component consist
of the subject aircraft segment and the nominee segment in the
form of the local tables SUBJECT SEGMENT and NOMINEE SEGMENT,
and the vertical separation criteria, Sepz_Hi and Sepz Lo. The
separation criteria are global parameters which are the FPCP
standards for aircraft flying above and below 29,000 feet,
respectively.

LR
&

Ly
PR

A
4 o‘/‘l’

Outgut

The output from the component is the variable Status which
indicates whether or not the subject-nominee segment pair
violates the vertical separation criterion.

4.3.3.3 Component Design Logic

The Altitude Check Component 1s invoked by the Fine Filter
whenever a subject-nominee segment pair passes through the Time
Check Component. A PDL representation of the Altitude Check
Algorithm is presented in Figure 4-21. The segments are first
checked for trangitions in altitude. If at leaat one of the
aircraft changes altitude over its segment, Status is assigned
a message indicating that there is a violation of the vertical
separation criterion and the algorithm is terminated. This
allows the segment pair to proceed directly to the Horizontal
Check for reasons indicated in Section 4.3.3.2.

A\l
‘l

If the flights are both level, the algorithm selects the
appropriate value of the vertical separation criterionm,
Vert Sep, on the basis of the altitudes of the two aircraft.
Whenever the altitude of either aircraft exceeds 29,000 feet, :
Vert_Sep is set equal to Sepz Hi. Otherwise, it is set equal

to Sepz Lo. The difference between Sepz Hi and Sepz_Lo

reflects the greater separation required at higher altitudes

where the aircraft travel at faster speeds.

4-51

. e, v, D T L R T R A S N N N TRV W SRS -
R SN e e L » G - PPN N S N IR PPN PV Ol Y VI
.




,i
:?
A
“
A
R
d
;
fa

e

l' -
ey

A
A

N
g
LA
“~
= ROUTINE Altitude Check;
o PARAMETERS SUBJECT_SEGMENT IN, NOMINEE SEGMENT IN, Status OUT;
N REFER TO GLOBAL Sepz Hi IN, Sepz_Lo IN;
' SARY
SUBJECT_SEGMENT
2, NOMINEE_SEGMENT;
M DEFINE VARIABLES .
i; Status Variable indicating whether or not the subject and
2_'{‘ nominee aircraft violate the vertical separatiom
2 criterion
Vert_Sep Vertical separation criterion;
bt .
2. # 1f either segment 1s assoclated with a vertical maneuver or a #
SN # vertical hold, no altitude check is performed 4
: IF SUBJECT_SEGMENT.first_cusp_type EQ °'vertical maneuver' OR
" SUBJECT_SEGMENT. first_cusp_type EQ ‘'vertical hold' OR
X NOMINEE ,_SEGMENT. first ._cusp_type EQ 'vertical maneuver' OR
% N(HINBE SEGMENT. first « _cusp_type EQ 'vertical hold'
- THEN
g;_' T Status = 'Violation of vertical separation criterion';
- ELSE
- ¥ set value of vertical separation criterion according to #
o # vhether or not either aircraft is above 29000 feet #
}\f IF MAX (SUBJECT SEGMENT.first z, NOMINEE SEGMENT.first . z)
B GT 29000
e THEN
A Vert_Sep = Sepz Hi;
P ELSE
ey T Vert ._Sep = Sepz_Lo;
) # determine whether or not vertical separation criterion is #
2 # violated #
% 1F ABS (SUBJECT_SEGMENT.first z - NOMINEE SEGMENT.first z)
b o GE Vert_Sep
. THEN
. T Status = 'No violation of vertical separation criterion';
: ELSE
*53 Status = 'Violation of vertical separation criterion';
vl END Altitude Check;
2 —
. FIGURE 4-21
A ALTITUDE CHECK i
h |
53
\.?
% 4~52
gt
¥ |
..‘ I
4
o, ‘ LY \' ‘1’\‘ (\ A X "'\-. '. I' <. -' '~!‘,f '''''''''' \q‘. ..". BRI S A n



If the algorithm determines that the vertical distance between
the two aircraft equals or exceeds Vert Sep, it assigns to

Status a nessage indicating that there i1is no altitude
violation. Otherwise, Status is assigned a message indicating
the occurrence of an altitude violation.

4.3.4 Horizontal Check

$.3.4,1 Mission

The Horizontal Check Component of the Fine Filter 1s designed
to test those subject-nominee segments that filter through the
Time Check and Altitude Check Components for possible
violations of the FPCP advisory and priority horizontal
separation criteria.

4.3.4.2 Design Congsiderations and Component Environment

The component distinguishes between regular segments and
segments which correspond to a holding pattern or a vertical
maneuver in its determination of whether or not the horizontal
separation criteria are violated. The reason for the
distinction between the two cases 1s that the procedures
required to determine whether a violation occurs are
fundamentally different for the two cases. In addition, the
type of data that describes a violation for two regular
segments differs from that which describes the violation
involving at least one holding pattern or vertical saneuver

segment.
Input

The Horizontal Check component requires, as local inputs, the
subject aircraft segment (SUBJECT SEGMENT), nominee aircraft
segment (NOMINEE SEGMENT), unique identifiers for the subject
and nominee flight plans (Subject F1_]1d and Nominee F1 Id), and
the bounds on the time interval 1In common between the two
aircraft (Time Overlap Min and Time Overlap Max). These inputs
are provided by the Fine Filter. In addition to the local
inputs, a global table called MANEUVER ENVELOPES is used by ome
of the elements of the Horizontal Check Component to access
information regarding any vertical maneuvers or holding
patterns that may be associated with at least one of the
aircraft,

«

-

4-53

LR

IR A S




Output

The output of the Horizontal Check component 18 Status, a
variable indicating whether or not the advisory horizontal
separation criterion is violated and, if so, a set of parameters
describing the violation. If the priority horizontal separation
criterion is also violated, then a set of parameters describing
this violation are included in the output. The complete list of
parameters include the Advisory Time Viol Start, Advisory Time
Viol End, Priority Time Viol Start, Priority Time Viol Ehd, the
time of minimum separation in the horizontal plane, Time  Msep,
and the minimum separation distance in the plane, mep_Dist.

A
AR

'il‘.,.
FeTasaan

‘A7

4.3.4.3 Component Design logic

The Horizontal Check component 1is invoked by the Fine Filter
vhenever a subject-nominee segment pair passes through the Time
Check and Altitude Check. It, in turn, calls one of two possible
elements, the Regular Segment Horizontal Check or the Maneuver
Envelope Horizontal Check, depending on whether or not both
segments are regular or at least one of the segments is
associated with a holding pattern or a vertical maneuver. Each
of the elements invokes other routines, as indicated in the
following representation of the organizational structure of the
Horizontal Check Component and in paragraphs below.

Horizontal Check
Regular Segment Horizontal Check
Relative Vectors
Violation | Times
Maneuver Envelope Horizontal Check
Maneuver Envelope Test
Envelope Envelope Violation Check
Get_ Box
Ehvelope Envelope_ Intersect Check
Edge | Containment Check
Segment | Envelope Violation Check
Get_Box
Envelope Regular_ Segment_Intersect_Check
Edge Containment Check

Figure 4-22 shows a PDL representation of the Horizontal Check
algorithm,

...............................
..........

..........




ROUTINE Horizontal Check;

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject_Fl Id IN,
Nominee F1 Id IN, Time_Overlap Min IN, Time Overlap Max IN,
Status OUT Advisory Time Viol Start OUT Advisory Time Viol End
ouT, Priority Time Viol Start OUT Priority Time Viol End OUT,
Time Msep OUT, Msep Dist OUT;

DEFINED IN GLOSSARY
Subject_. Fl Id
Noninee F1 | “1d
Time Overlap Min
Time Overlap Max
Advisory Tine Viol Start
Advisory Time ' Viol End
Priority Time ' Viol Start
Priority Time Viol “End

Time Msep :
Msep Dist
SUBJECT_SEGMENT ' A
NOMINEE SEGMENT;
DEFINE VARIABLES
Status Variable indicating whether or not the subject and
nominee aircraft violate the advisory horizontal
separation criterion; J
IF SUBJECT SEGMENT.first cusp_ type EQ 'regular' AND

NOMINEE SEGMENT.first_cusp_type EQ 'regular’
THEN
" CALL Regular_Segment_Horizontal Check (SUBJECT_ SEGMENT '
IN, NOMINEE SEGMENT IN, Time Overlap Min IN, Time_Overlap_Max
IN, Status OUT, Advisory Time Viol Start OUT, Advisory Time
Viol End OUT, Priority Time Viol Start OUT, Priority Time_
Viol End OUT Time Msep OUT, Msep Dist OUT)
ELSE
CALL Maneuver Envelope_Horizontal Check (SUBJECT_SEGMENT IN, ‘
NOMINEE SEGMENT IN, Subject F1 Id IN, Nominee Fl Id IN, Time_
Overlap Min IN, Time Overlap Max IN Status OUT, Advisory
Time viol Start ouT, Advisory Time Viol End OUT, Priority
Time ' Viol “Start OUT, Priority Time ' Viol End OUT, Time Msep )
OUT, Msep Dist oun) ;
END HorIzontal Check;

HORIZONTAL CHECK .

4-55

[
-
..............
.....................................

R \'.‘* N .
N s - «
. . . - m e » . - - . . P -LH
o . B P I R U S ke ) Yo, . - a¥n -. A.L ‘l \-AAA-LAL_A
':-‘..’;}:’-}i\n\hbi'a.“ R P A Y VA Y A LI 5 P & 8 W RIS ala




[

R
3

oM"'
AL '.":

7

Regular Segment Horizomtal Check

The Regular Segment Horizontal Check algorithm wuses the

(s 3
s relative velocity and relative position vectors of the aircraft
«\'. over their segments to identify violations of the horizontal
oo separation criteria and to calculate the parameters which
ey describe these violations. It invokes a routine called
Relative Vectors which calculates the relative velocity and
AN relative position vectors of the two aircraft. It then uses
254 these relative vectors to compute the three coefficients which
SN define the separation distance function (see Appendix B for the
-—j:: mathematical derivation of all of the parameters in the Regular
Segment Horizontal Check). The algorithm calls the routine
Violation Times, supplying it with the separation distance
I function coefficents and the advisory horizontal separation
O criterion Advisory_Seph. Violation Times determines if a
) violation of this criterion exists and, if so, calculates the
‘a0 start and end time of the violation. Under this circumstance,
4*.',' the routine 1is called again with the priority separation
‘ distance criterion, Priority Seph, serving as an input.
A
$ The final portion of the algorithm calculates the time of
}'.i minimum separation in the (x,y) plane, Time Msep, and the
Ny minimum separation distance, Msep Dist, using the formulas
o derived in Appendix B. Time Msep 18 replaced by a bound of the
common time interval if it falls outside of this interval.
Lo n, Specifically, if Time Msep is less than Time Overlap Min or
:’_‘-}-} greater than Time Overlap Max, then its value is set equal to
.r::'.- Time Overlap Min or Time Overlap Max, respectively, since,
;j under such cIrcumstances, the "true™ time of minimum separation
L is8 one of the common time interval's endpoints (Figure 4-23
illustrates the need for this reassignment of values). With
X the time of wminimum separation calculated, -the algorithm
.,:. finally computes Msep Dist by simply substituting Time Msep
: :‘: ‘ into the separation distance function.
4".
{‘ Figure 4-24 shows the PDL representation of the Regular Segment
Horizontal Check Algorithm,
;-'.': Relative Vectors
35
;:-:Ef This element of the Regular Segment Horizontal Check calculates
the horizontal relative velocity and the relative position vec-
tors of the subject and nominee aircraft over their segments.
N It first computes the horizontal velocities of the subject
e aircraft and the nominee within their respective segments using
DA the information provided in the cusps. The relative velocity
_\-' vector, Rel Vel, 1s then obtained by subtracting the nominee
- o 4-56
oy
3
AN
34




N O
Iy :
O AL

s
. ;.'Ti'

ST

Pl Sul? A 2+ )

T T 0™

P i

s w

4 S
9 ool )

-t

\ s e

.
Ly
%

~ R
r 4

y
]
”

.".

CASE 1: Time Overlap Min < Time risep . Time Overlap_dax
Consequence: Time Msep is left unchanged

Separation
Distance

. eI e trdiensthesnctens i e

A —r | -
@ 00
CASE 2: Time Msep « Time Overlap Min

Consequence: Time Msep set equal to Time Overlap Min

Separation
Distance

) | 1 ]
QOO
A
CASE 3: Time Msep > Time_Overlap Max

Consequence: Tine_ﬂaep'set equal to Time Overlap Max

Separation
Distance

OloNON
|
1 = Time Overlap Min

2 = Time Overlap Max
3 = Time_rsep

Legend:

FIGURE 4-23
DERIVATION OF TIME OF MINIMUM SEPARATION

4~57

R
“
k!
b
R
M
3

_________________________________________________________
......................................
.......................

.
)
N
]
1)
»
,
€
»
»
1
4
¢
I3
»
s
[
(3




'-’.!.!. DuSiiiiain LA

e
g

4% N
' ‘1“1‘

e
'.I“Q

[

Sty

PAENLNYS,

ROUTINE Regular Segment Horizontal Check;

PARAMETERS (SUBJECT SEGMENT IN, NOMINEE . SEGMENT IN, Time Overlap Min
IN, Time Overlap Max IN, Status OouT, Advisory Time_Viol Start OUT
Advisory Time Viol End ouT, Priotity Time viol Start OUT,
Priority Time Viol End OUT, Time Msep OUT, Msep Dist -UT),

REFER TO GLOBAL Advisory Seph IN, Priority Seph IN;

. op A
[
* ‘O .‘

e
.. ’
'y v

DEFINE. IN GLOSSARY
~ Time_Overlap_ Min
Time Qverlap Max
Advisory Time Viol Start
Advisory Time Viol End
Priority Time Viol Start
Priority Time ' Viol “End

"
.
.

LA

Time__Msep

Msep Dist

SUBJECT_SEGMENT

NOMINEE SEGMENT;

DEFINE VARIABLES

Status Variable indicatipg whether or not the subject and
nominee aircraft violate the advisory horizontal
separation criterion

A Coefficient of the quadratic term in the separation
distance function (see Appendix B)

B Coefficient of the linear term in t.e separation
distance function (see Appendix P)

C Constant term in the separation distance function
(see Appendix B)

Rel Vel Relative velocity of the subject and nominee aircraft
in the horizontal plane (i.e., subject aircraft
velocity minus nominee aircraft velocity)

b 4 X component of the relative velocity
y Y component of the relative velocity

Rel Pos Relative position of the subject and nominee aircraft
at Time Overlap Min in the horizontal plane (i.e.,
Subject aircraft position micus nominee aircraft
position) _

x X component of the relative position
y Y component of the relative position
State Variable indicating whether or not the subject and

nominee violate the specific horizontal separation
criterion under consideration

Delta T Length of time between Time Overlap Min and the time
of minimum separation;

FIGURE 4-24
REGULAR SEGMENT HORIZONTAL CHECK

4-58




# calculate the relative vectors needed by this routine #

CALL Relative Vectors (SUBJECT SEGMENT IN, NOMINEE SEGMENT IN,
T Time Overlap Min IN, Rel vel ouT, Bel Pos OUI),

# calculate the coefficients of the separation n distance function #

A = MAGNITUDE(Rel Vel) ** 2;

B=2*% DOTzRel Vel, Rel Pos),

C = MAGNITUDE(Rel Pos) *¥ 2;

# determine if the advisory horizontal separation criterion is #

# violated and, if so, calculate the start and end times of the #

# violation #

CALL Violation Times (A IN, B IN, C IN, Advisory Seph IN, Time_
Overlap Min IN, Time Overlap Max IN, State OUT, Advisory Time
Viol Start OUT, Advisory Time v1oI"End ouT);

IF State E EQ *violation’

THEN
T Status = 'Violation of advisory horizontal separation criterion';
# given that a violation of the advisory horizontal separation #

# criterion has been detected, determine if the priority #
# separation criterion is violated and, if so, calculate the #
# start and end times of the violation #

CALL Violation Times (A IN, B IN, C IN, Priority Seph IN,
Time Overlap Min IN, Time Overlap Max IN, State OUT, Priority_
Time Viol Start OUT Priority Time Viol . 1 End OUT),
# calcuJate time of minimum separation and minimum separation #
# distance of the two aircraft in the horizontal plane
Time Msep = (~B / (2 * A)) + Time Overlap Min;
IF Time Msep LT Time Overlap Min
THEN
Time_ysep = Time_Overlap Min;
ELSE
IF Time Msep GT Time Overlap Max
THEN
T Time _Msep = Time Overlap Max;
Delta T = Time Msep — Time Overlap Min;
Msep_Dist = Sg T(A * Delta T ** 2 + 3 * Delta T + C);
END Regular_ Segment__ Horizontal Check;

FIGURE 4-24
REGULAR SEGMENT HORIZONTAL (Concluded)

4-59

Y




o it sieve Jusve autediioi S e noe S 4 ot T T R R T s T R L A G T T T A )

- - b, vk & b Ay s P, :
TSR v.
X h

LY

2w il
inamndiin A2

g

y ~.;' I'

P

velocity from the subject velocit Similarly, the relative
position vector, Rel Pos, is derived by first calculating the
respective horizontal position vectors of the two aircraft at
Time Overlap Min, the earliest time that the two segments
overlap in time, and then finding the difference of the two
vectors.

casadaboliBel .

Figure 4-25 shows a PDL representation of the Relative Vectors
Algorithm.

Violation Times

This element of the Regular Segment Horizontal Check determines
whether or not the two aircraft violate the horizontal separa-
tion criterion, Seph, supplied as an argument to the routine
and, 1f Bo, calculates the starting and ending times of the
violation. The mathematical derivation of the relevant
formulas is provided in Appendix B.

The algorithm computes the discriminant of an algebraic
equation. This equation is obtained by subtracting the square
of Seph from the square of the separation distance function and
setting the result equal to zero. The nature of its roots
indicate whether or not Seph is violated. If the discriminant
is either a negative number or zero, the separation distance
between the aircraft 18 equal to or exceeds Seph. Thus, no
violation 1s expected to occur and the variable State 1is
assigned a message indicating this. The parameters Time
Viol Start and Time Viol End are set equal to a null value. If
the discriminant is positive, then a violation is theoretically
possible, given the magnitudes and directions of the relative
vectorgs. Nevertheless, it is also possible that the violation
of the separation criterion occurs outside of the time interval
in common between the two aircraft. Whenever the derived
earliest and latest time of violations indicate that the
violation occurs outside the interval in common between the two
aircraft, then State is assigned a message that there 1s no
violation of the horizontal separation criterion. In this
case, the parameters Time Viol Start and Time Viol End are set
equal to a null value. Otherwise, State 1is made to indicate
that there iy a violation. If either of the two time bounds of
the violation interval 1s located outside of the common time
interval, say Time Viol Start 1is less than Time Overlap Min,
then the corresponding bound of the common time interval
becomes the new bound of the violation, that is (for the same
example), Time_Overlap Min becomes the new starting time of the
violation period. The objective of this substitution is to

4-60




. AN
4 s 0

ve
»

rl

»

-
v,

‘
LN A
7 ]

i
g

Y R R
Ay eyt

-
.
.

e 2

-4
0

~ Ay
. g,

]
a

L vl SR
.
B ..14

ety
o)

v
P

L]
.
.

:
¢
-
i

<.
-'I

!!

I..

——-
'

LA

e
>,

T
.

NN

>

4

s

Py
.

-

-

T ORI LN IR TR

ROUTINE Relative Vectors;

PARAMCTERS SUBJECT ShGMLNT IN NOMINEE SEGMENT IN Time Overlap Min
IN, Rel Vel OUT Rel Pos OUT

DEFINED IN GLOSSARY

~ Time Overlap Min
SUBJECT SEGMENT
NOMINEE_SEGMENT;

DEFINE VARIABLES
Rel Vel

Rel Pos

x
y
Subject_Velocity
X
y
Nomiaee Velocity

b 4

y
Supject_Position

X

y
Nominee Position

b 4
y

Relative velocity of the subject and nominee

aircraft in the horizontal plane (i.e.,
subject aircraft velocity minus nominee
aircraft velocity)
X component of the relative velocity
Y component of the relative velocity

Relative position of the subject and

nominee aircraft at Time Overlap Minm in
the horizontal plane (i.e., subject
aircraft position minus nominee
aircraft position)
X component of the relative position
Y component of the relative position
Horizontal velocity of the subject aircraft
within 1ts segment
X component of the subject a/c velocity
Y component of the subject a/c velocity
Horizontal velocity of the nominee aircraft
within 1its segment
X component of the nominee a/c velocity
Y component of the nominee a/c velocity
Position of the subject aircraft in the
horizontal plane at time Time Overlap Min
X component of the subject a/c position
Y component of the subject a/c position
Poasition of the nominee aircraft in the
horizontal plane at time Time Uverlap_Min
X component of the nominee a/c position
Y component of the nominee a/c
position;

FIGURE 4-25
RELATIVE VECTORS

4-61

. CUs e .
S . .
S A .
N A

8k adhak Soea JHEERS




.
1% e

’, U )

. o
.

Wi
(‘.4'. XA

)

E's

welal

4, ( \'{‘l"‘

'-L¢¢A

U I ) .
MRS A
% fe e 0 B8 e
B A

|
P
ChhS

g &

# calculate the subject aircraft velocity, the nominee aircraft #

# velocity, and the relative velocity of the two aircraft #

Subject_Velocity = (SUBJECT_SEGMENT.second__xy _pair - SUBJECT_SEGMENT.
firsc_xy pair) / (SUBJECT SEGMENT.second t -
SUBJECT_SEGMENT.first_t);

Nominee Velocity = (NOMINEE_SEGMENT.second xy _pair — NOMINEE SEGMENT.
first_xy pair) / (NOMINEE SEGMENT.second t -
NOMINEE SEGMENT.first t);

Rel Vel = Subject Velocity ~ Nominee Velocity;

# calculate the subject aircraft position, the nominee aircraft #

# position, and the relative position of the two aircraft at

# Time Overlap Min

Subject_Position = SUBJECT_SEGMENT.first xy pair + (Time Overlap Min-
SUBJECT_SEGMENT.first t) * Subject_Velocity;

Nominee Position = NOMINEE SEGMENT.first_xy pair + (Time Overlap Min-
NOMINEE SEGMENT.first_t) * Nominee Veloclty; -

Rel Pos = Subject Position - Nominee Position;

END Relative Vectors;

"% N

FIGURE 4-25
RELATIVE VECTORS (Concluded)

4-62

.....




define the true violation period and not the theoretical one
obtained through straight calculations.

Figure 4-26 provides a PDL representation of the Violation
Times Algorithm.

Maneuver Envelope Horizontal Check

The Maneuver Envelope Horizontal Check algorithm tests for
violations of the FPCP horizontal separation criteria whenever
the subject and/or the object aircraft are engaged in hold
maneuvers or vertical maneuvers and previous tests for time
overlap and vertical separation have not ruled out the
possibility of an encounter. A test is first made to see 1if
the advisory horizontal separation criterion, Advisory Seph, is
violated and if it is, a test for violation of the priority
separation criterion is made. These tests are done by the
Maneuver Envelope Test element. When either criterion 1is
violated, the corresponding start and end times of violation
(Advisory Time Viol Start, Advisory Time Viol End, and/or
Priority Time Viol Start, Priority Time Viol End) are returned.

Figure 4-27 shows the PDL representation of the Maneuver
Envelope Horizontal Check algorithm.

Maneuver Fnvelope Test

The Maneuver Envelope Test element performs the tests for
violation of the horizontal separation criterion, Seph, when
either the subject or the object aircraft is in a maneuver.
Figure 4-28 1illustrates the two holding pattern cases in which
this algorithm i1is invoked and Figure 4-29 1llustrates the
vertical maneuver case. The horizontal criteria used are
independent of the position of the aircraft within the
maneuver. Violations depend only on the distance between the
regions, in the horizontal plane, covered by the envelopes or
segments involved. It 1is assumed that these regions are
rectangles in the horizontal plane.

In the following discussion, the horizontal projection of a
vertical maneuver will refer to the 1line segment in the
horizontal plane corresponding to the two extreme time points
of the maneuver (e.g., the right downstream and left upstream
points).

When both the subject and object aircraft are involved in an
airspace sweeping maneuver, a violation, in the horizontal
plane, occurs in any of the following three cases:

4-63




S i v L il LBy T W e T T T RYETETR TS AT AT e T VLR VT e T T T T T YT
AL D [ANED SN " Plar e DA AL Al de & I LM N L NS g i KA TR KO At aiEs S RN AR R S T L S S

~
2
AS
Y3
A3
RS
b A
N ROUTINE Violation Times;
o PARAMETERS A IN, B IN, C IN, Seph IN, Time Overlap Min IN, Time
o Overlap Max IN, State OUT, Time Viol Start OUT, Time Viol End OUT;
- DEFINED IN GLOSSARY

Time Overlap Min
Time  Overlap Max;
DEFINE VARIABLES

t ) A Coefficient of the quadratic term in the
:ﬁ: separation distance function (see
g Appendix B)
N B Coefficient of the linear term in the
— separation distance function (see Appendix B)
g C Constant term in the separation distance
function (see Appendix B)
Seph Horizontal separation criterion
State Variable indicating whether or not the subject

and nominee aircraft violate the specific
horizontal separation criterion under

3 consideration
v Time Viol Start Earliest time that the horizontal separation
- criterion is violated
v Time Viol End Latest time that the horizontal separation
2o criterion is violated
" Discriminant Discriminant of the quadratic equation formed
e by setting the difference of the separation
.25 distance function squared and the horizontal
Y separation criterion squared to zero (see
N Appendix B);
20 FIGURE 4-26
B VIOLATION TIMES
-
)
4
JEQ
- . 4-64
!
N




e A e - - . - Al - - - LT . P -
- ¥ - T . .- .. -~ . . - . 3 - . - K . . A o
ﬁ'}.,.ﬁ".‘!-'-',\l".."'\'-"'-'-'i‘~'~‘,-'-‘- RO » e R
.
) -

Discriminant = B #* 2 -~ 4 * A * (C - Seph % 2);
IF Discriminant LE 0
¥ equivalent to separation distance function #
# being greater than or equal to Seph #
.. THEN
State = 'no violation';
Time Viol Start = NULL,

. Time Viol End = NULL;
X3 ELSE
T ¥ calculate the times of violation start and end #
3 Time Viol Start = (-B - SQRT(Discriminant)) / (2 * A) +
Time Overlap Min;
i Time Viol End = (-B + SQRT(Discriminant)) / (2 * A) +
k: Time Overlap Min;
N # determine if the entire violation period occurs outside of the #
f‘ # time interval common to both segments
= IF Time Viol Start GT Time Overlap Max OR Time Viol End LT
Time Overlap Min
o THEN
oo T State = 'no violation';
2 Time Viol Start = NULL;
A3 Time Viol End = NULL;
. ELSE
State = 'violat:lon';
- # calculate the "true” times of violation start and end #
g Time Viol Start = MAX(Time Viol Start, Time Overlap Min);
o Time Viol End = MIN(Time Viol End, Time_Overlap Max);
,-::. END Violation_'fimea, .
-
- FIGURE 4~26
VIOLATION TIMES (Concluded)
o
o
4-65
3
"
>
3

o Soe .
TS WP YUk WS TS o P W




l~ ’

AN

-

Y

LENREA

ot

LA YA "W
’ ‘-‘..‘:‘"

A e

o‘:

e

»

o
- “0

) 8,
-
(PN

LR

(CAX R

FEIGTIR

P Y AN
[N WL N A

L

FIARAL

s RN

- "‘.f." -

I.‘I'

..................

ROUTINE Maneuver Envelope Horizontal Check;

#checks for violation of horizomtal separation criterion when thef
#segments are maneuver envelopes#

#tests for violation of both advisory and priority horizontal#
fseparation criterion are made; if a violation 1s detected#
#returns the start and end times of the violation#

PARAMETERS SUBJECT_ SEGMENT IN, NOMINEE SEGMENT IN, Subject F1 Id IN,
Nominee F1 1d IN, Time Overlap Min IN, Time Overlap Max IN,
Status OUT Advisory Time Viol Start OUT Advisory Tine Viol ._End
ouT, Priority Time Viol Start OUT, Priority Time Viol End OUT,
Time  Msep OUT, Hsep Dist OUT;

REFER TO GLOBAL , Advisory Seph IN, Priority_Seph IN;

DEFINED IN GLOSSARY
Subject F1 1d
Nominee F1 Id
Time Overlap Min
Time | Overlap Max
Advisory Time Viol Start
Advisory 'I‘ine Viol | . End
Priority Tine Viol Start
Priority Tine Viol . . End

Tine_}hep
Msep Dist
SUBJECT_SEGMENT
NOMINEE_SEGMENT;
DEFINE VARIABLES
Status Variable indicating the outcome of a particular Fine
Filter test; .
FIGURE 4-27
MANEUVER _ENVELOPE HORIZONTAL CHECK
4-66
N o S A SR S S S S T L e T




-y A - - 'Q - N -
ai SEARSRARY Pa b aanae IS LUt R A At S AL YA A I
1

ta
Y

Time Msep = NULL;
W Msep Dist = NULL,

#first test for violation of advisory separation criterion#

CALL Maneuver Envelope Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT IN,

S Subject F1 "Id 1IN, Nominee F1 Id IN Time Overlap Min IN, Time

Overlap_| Max IN, Advisory ‘Seph IN, Status OUT, Advisory Time ' Viol

Start OUT, Advisory Time Viol End ouT);

) #test for pr priority violation only if an advisory violation has been#

s- #detected?

| IF Status EQ 'violation'

5 THEN #test for violation of priority separation criterion#

' ~ Status = 'violation of advisory horizontal separation criterion’;
CALL Maneuver Envelope Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT

5 IN, Subject . F1 1d IN, Nominee F1 1d IN, Time  Overlap | Min IN,

‘h Time Overlap Max IN, Priority_Seph IN, Status OUT, Priority_

2 Time_Viol Start OUT, Priority Time Viol End OUT);

‘. END Maneuver Envelope Horizontal Check°

o FIGURE 4-27
fi MANEUVER_ENVELOPE_HORIZONTAL CHECK (Concluded)
{

|
-
Ll
-
1
|
-
i
-
L]
e
\

4~67

....... . N w
- W L)

> . N ;4 Ah N -
o A
e i AR R )




GINOANI S1 ¥OIHD TVANOZIYOH NYILLYd DNIGIOH JHL JUIHM S3SVD
- 82+ 3UNOId

NYALLVd ONIQIOH
NI 1LAVMOYIV ENO

ONI@IOR NI 14VYDUIV HIo®

4-68

-

< d

[
T TS SR

s e e e P RS X .
BV A N I U N N AN G S SR S T S S

..
»

.-l
Sy Y

N

St B
Ta At s oo oa i aate

. O
IR

AT
TR
PG AP P

R

,;.

~at
e

ales

>

ol
>




2
N
?3 ' *
R (x2,y2)
P
:E -
' Aircraft 1 Path \
(x3,y3)
Buffer Region
-axis 1\\ -—
y - .
(
- (x1,y1)
o —
Seph (21,¥1)
x—-axis

(a) Aircraft Paths and Buffer Region in (x,y) Plane

Alrcraft 1 - Maneuver Envelope
(x1,y1,21,t1) \ (x4s¥4124st4)
(x1,y1,21,t1) (x2,¥2522,t32)
—e
z-axts Alrcraft 2 Path—Jf
(!Z’YZszzntz) (‘3)’3:331t3)

t-axis

(b) Vertical Maneuver Envelope of a First Aircraft and
Path of Second Aircraft in (z,t) Plane -

[ EESE -~ 3SR

FIGURE 4-29 .
EXAMPLE OF HORIZONTAL CHECK FOR A VERTICAL MANEUVER {
(]

4-69 ;

!

;
¢
, . . S T T Tl S B S
.l i .. L Coe . '.'."«""."',"..'--.'.,,'-‘."-."““’f-."-..“l.-.‘l"-""-:"..‘.‘\"'4. L S Y ]
PN P I R T AT ST S PR, VU RSl S WA, 6 W WR, W T I S WGP LR

.




i e r . L AL RS E A A & A A NN AL 0 St e bR A e i s

e the horizontal maneuver envelope of one of the aircraft
is completely contained in the other

: ,; ) e the horizontal maneuver envelopes intersect

P X

3 e the horizontal maneuver envelopes (closest points on
s each) are within a distance of (advisory or priority)

Seph of each other

:E“ These cases are checked in the element Envelope Envelope
T4t Violation Check.
o)
N When one of the subject or object segments is regular, a viola- -
tion occurs in any of the following three similar cases:
R ﬁ ) )
3 fb e the regular segment 1is contained within the horizontal
A0 maneuver envelope in the horizontal plane
>0
33 e the regular segment intersects the horizontal maneuver
i envelope ’
2
j{},- e the distance (closest points on the segment and
{‘: envelope) between the regular segment and the horizon-
gk tal envelope are within a distance of (advisory or
* priority) Seph of each other in the horizontal plane
ot These cases are checked in the element Segment Envelope
{. Violation Check.
vz\:'
". The variable Seph is an input parameter, thus permitting this
algorithm to be used for the testing of the violation of both
‘ the advisory and the priority horizontal separation criteria
X (that 1s, Advisory Seph and Priority Seph) by its calling
v :::: routine, Maneuver Envelope Horizontal Check. Output from this
Nk routine are the variables Time Viol Start and Time Viol End,
o and a status variable indicating whether or not a violation has
— occurred. Whether the times of violation indicate advisory or
. priority times depends on which input value for Seph was used.
(5
:tzf- Figure 4-30 shows the PDIL representation of the Maneuver
v Envelope Test element.
]
?__ Envelope Envelope Violation Check
;"',:; The Envelope Envelope Violation Check element tests for
Wh] violation of the horizontal separation criterion whenever both
f aircraft are involved in maneuvers. The envelope of each
q aircraft 1is extended around its perimeter by one-half Seph
4-70
NS
~




surt aicha tiie it DR S aT e .
y o "_'—'7.(‘.-{'_-‘7‘_' Ciadc ek Sl Sl LA . ~ . R .

A i 4 ko oA N il 2L AR e S

L2 p T A G ]

o RIS

ROUTINE Maneuver_ Envelope_Test;
Ftests for violation of a horizontal separation criterion Seph#

[ oy et
AAAs  GXRDES

A #vhenever either of the two aircraft is in a maneuver envelopef

': PARAMETERS SUBJECT_SEGMENT IN, NOMINEE SEGMENT IN, Subject_F1 Id IN,

o Nominee F1_Id IN, Time Overlap Min IN, Time Overlap Max IN, Seph
IN, Status OUT, Time Viol Start OUT, Time Viol End OUT;

~ DEFINED IN GLOSSARY

r Subject F1 1d

o Nominee_| Fl Id

. Time_Overlap Min

b Time Overlap Max
Time_Viol Start

¢ Time Viol End

9 SUBJECI_SEGMENT

- NOMINEE_SEGMENT

’ DEFINE VARIABLES

3 Seph Horizontal separation criterion
Status Variable indicating the outcome of a particular Fine

" Filter test;

g CHOOSE CASE

: WHEN SUBJECT_SEGMENT.first cusp type IS IN ('hold', 'vertical

<] " hold', 'vertical maneuver') AND NOMINEE ._SEGMENT.first cusp

4 type IS IN ('hold', 'vertical hold', 'verticel maneuver') THEN

#check the two maneuver envelope caae#

: CALL Envelope_Envelope_Violation Check(SUBJECT_SEGMENT IN,

j NOMINEE SEGMENT IN, Subject Fl 14 1IN, Nominee Fl Id IN,

. Time Overlap Min 1) IN, Time Overlap Max In, Seph IN,

Status OUT, Time Viol Start OUT, Time_Viol_End OUT);
WHEN SUBJECT SEGMENT.first cusp type IS IN ('hold', 'vertical
 maneuver') THEN #object in hold, nominee regular#
CALL Segment_ Envelope Violation Check(Subject F1 Id IN,
SUBJECT SEGMENT IN, NOMINEE_ 'SEGMENT IN, Seph IN, Time

Overlap Min IN, Time Overlap Max IN, Time Viol Start OUT,
Time Viol End OUT Status OUT),

OTHERWISE #nominee 1p a maneuver envelope subject is regular#
CALL Segment Envelope Violation Check(Nominee F1 _Id IN,
NOMINEE SEGMENT IN, SUBJECT_! SEGMENT IN, Seph IN Time

Overlap Min IN, Time Overlap Max IN, Time Viol Start OUT
Time Viol End ouT, Status OUT),
END Maneuver_Envelope_Iest,

FIGURE 4-30
MANEUVER _ENVELOPE_TEST

4-71

T s e




ot S - St “Tutia “Shast Shuis Thater ets e ~Yiad “Thabk Spt Sl Ikt Dhatut Shate. el Jhas_ EhabiL S s AR s S SR S e N r W e
r.‘-‘".".-.d"-,-r_-.-'_' o N NIRRT TRTRRTETISS s A A A S I N R RV Wl 2._.1

e e ™

(advisory and, in a subsequent call, priority), thus forming
two temporary two~dimensional envelopes in the horizontal plane
which are then compared to determine if a violation has
occurred. This is done by the Get Box element. Once this
extension 1is made, it 1s sufficient to test the two new
extended envelopes for the following cases. Let A be the
subject's extended envelope and let B be the object's extended
envelope. Then the three cases to be tested are the following:

e Do the boundaries of A and B intersect?
e Is region A contained within the boundary of region B?
e 1Is region B contained within the boundary of region A?

Note that it is not necessary to test for closeness of regions

A and B since this is already accounted for in the extensions
K& made to the original envelopes.

The first case 18 accomplished by testing each edge of one
envelope against each edge of the other. If any two edges
intersect, the test ends and a violation message is set. If no
. intersection 18 determined, then the envelopes are tested to
~ see if either 1s contained within the other. These tests are
done in the Envelope Envelope Intersect Check element.

This case may be implemented by testing any edge (say the edge
connecting the right downstream and right upstream vertices) of
the boundary of region A against all edges of the boundary of
N region B. The element Edge Containment Check 1s called to
. perform the test for the selected edge being contained in the
boundary of regiom B,

If this test does not produce a violation, then the next case
is tested. The test for region B being contained within the
boundary of region A is accomplished by reversing the roles of
A and B in the discussion above., If a violation is determined,
then the times of violation start and end are set equal to the
mininmum and maximum times of the ovetlap period, respectively.

Figure 4-31 illustrates a PDL representation of the Envelope
Envelope Violation Check element.

Get Box

The element Get Box builds a rectangular box around the
: horizontal projection of the maneuver. Using the input
t parameter S as the separation distance, the algorithm extends
the perimeter of a holding pattern by this distance. In the
cagse of a vertical maneuver the extension is made by forming a

4~72

. et .t .4 s
P - P o
- .« .



- R A A A S S S S -T

e
o
o
- ROUTINE Envelope Envelope Violation Check;
. Ftests for violation of a horizontal separation criterion Seph#
A #whenever both aircraft are in maneuvers, (either holds or#
N #vertical maneuvers)#
A PARAMETERS SUBJECT_SEGMENT IN, NOMINEE SEGMENT IN, Subject_Fl Id 1IN,
) Nominee F1_Id IN, Time Overlap Min IN, Time Overlap Max IN, Seph
o IN, Status OUT, Time Viol Start OUT, Time Viol End OUT;

DEFINED IN GLOSSARY
Subject F1 1d
Nominee_ F1 Id
Time Overlap Min
Time Overlap Max
Time ' Viol Start
Time Viol End
SUBJECT_SEGMENT
NOMINEE_SEGMENT;
DEFINE VARIABLES
Seph Horizontal separation criterion
Status Variable indicating the outcome of a particular Fine
Filter test;
DEFINE TABLES
SUBJECT_B(X_VERTICES Vertices in horizontal plane of the
subject box surrounding the maneuver

envelope
right downstream vertex
X X coordinate
y y coordinate
right upstream vertex
x x coordinate

y coordinate
left_downstream vertex

x x coordinate

y y coordinate
left_upstream vertex

b 4 x coordinate

y y coordinate

edgel AGGREGATE(right downstream vertex, right upstream_ vertex)

edge2 AGGREGATE(right _upstream vertex, left upstream vertex)

edge3 AGGREGATE(left upstream vertex, left 3anstream |_vertex)

edged AGGREGATE(left downstream _vertex, right downstream

vertex
NOMINEE BOX_VERTICES Vertices in the horizontal plane

of the box surrounding the nominee
maneuver envelope; fields defined like
SUBJECT_BOX_VERTICES;

FIGURE 4-31 |
ENVELOPE_ENVELOPE VIOLATION_ CHECK

4-73

\

AT R e . ~ . . Lo
g A T T e T ot -\ R o
S P I N P R . R I I S S L. .-x_A..L;i;'hm-!;_lmnA.n-n-l-'n‘.;.--_--‘_; - m_tas




' "
..l .'l “‘ . l‘.l ..L ! . '*‘ 'l ‘r‘l‘ .l “

4

z J}J.’I"} b

L

#check the two maneuver envelope casef

#get the coordinates for the subject, extended by a distance of#
#Seph/2 surrounding the horizontal hold or the horizontal segment#
#of the vertical maneuver#

CALL Get Box(Subject F1 Id IN, SUBJECT_SEGMENT.first t IN, Seph/2
IN, SUBJECT SEGMENT.first . _cusp_type IN, SUBJECT BOX VERTICES ouT,
Time_Overlap Min INOUT, Time Overlap Max INOUT);

#get the coordinates for the nominee, extended by a distance of#
#Seph/2 surrounding the horizontal hold or the horizontal segment#
#0of the vertical maneuver#

CALL Get_Box(Nominee F1_Id IN, NOMINEE SEGMENT.first t IN, Seph/2
IN, NOHINEE SEGMENT.first _cusp_type IN, NOMINEE BOX VERTICES OUuT,
Time Overlap Min INOUT, Time Overlap Max INOUT);

#first test if the segments intersect#

CALL Envelope Envelope Intersect Check(SUBJECT BOX_VERTICES 1IN,

" NOMINEE BOX_VERTICES IN, Status OUT);

IF Status.gg no violation'

THEN #they do not intersect#

Ftest 1f subject envelope 18 contained within nominee envelopef
#fneed only check one edge of the hold since they don't#
#intersect take the edge connected by the vertices right #
#downstream vertex and right upstream vertex#

CALL Edge | Containment Check(SUBJECT BOX_VERTICES.Edgel IN,

" NOMINEE BOX_VERTICES IN, Status OUT);
IF Status<§g *no violation’
THEN #subject box is not contained within the nominee's#
Ftest if the nominee envelope 1s contained within the#
#subject 'o#
CALL Edge Containment Check(NOMINEE BOX_VERTICES.Edgel 1IN,
SUBJECT BOX_ VERTICES IN, Status OUT) H
IF Status EQ *violation'
THEN

#set the time of violation to the overlap times#

Time Viol Start = Time Overlap Min;

Time Viol | “End = Time Overlap Max;

END Envelope Envelope Violation _ Check;

RIS | U

-

.l

FIGURE 4-31 L
ENVELOPE_ENVELOPE_VIOLATION CHECK (Concluded) .
;

L

4-74




A O R N T S .

A Sa

box a distance of S around the line segment conmnecting the
right downstream and left upstream points of the envelope in

the (x,y) plane. Also in this case the Time Overlap Min and
Time Overlap Max are reset to coincide with the time

coordinates of these points.

P Y AR W )

Figure 4-32 illustrates a PDL version of the Get Box algorithm.

Envelope Envelope Intersect Check

The Envelope Envelope Intersect Check element tests the
extended box around the subject’s envelope to see 1if it
intersects the extended box around the object's envelope. This
is accomplished by testing each edge of the subject against
each edge of the object iteratively until a violation 1is
detected., If a violation is detected, the flag, Status, 1s set
to a violation status.

Figure 4-33 illustrates a PDL version of the Envelope Envelope
Intersect Check element.

Edge Containment Check

The Edge Containment Check element takes as input the vertices
of a box 1in the horizontal plane (BOX_VERTICES) and the
vertices of an edge (RBdge) and tests to see if Edge 1is
completely contained within the rectangle defined by BOX_
VERTICES. This is accomplished by first determining the points
of 1intersection of the line pasasing through the vertices of
Edge and the rectangle defined by BOX VERTICES. Once this is
done, if there 18 an 1intersection, then the 1line segment
defined by Edge 1s tested to see 1f the x coordinates and y
coordinates of Edge are within the intervals defined by the x
and y coordinates of the intersection points. If they are,
then Edge 1s completely contained in the rectangular region
defined by BOX VERTICES and the flag, Status, is set to a
violation. - '

B
A
:
4

RN X Al

e _

Figure 4-34 illustrates a PDL versifon of the Edge Contalnment
Check algorithm.

Segment Envelope Violation Check

. e

If either of the segments to be tested is a regular segment,
then the horizontal envelope of the other 1s extended around _
its perimeter by Seph miles to provide a buffer to guarantee '
sufficient separation. This is done by the element Get Box, e N
described above. A similar test to the ones above 1is then o

4-75

T
PR I

Y. RN ST S Tt T e e e S . I i o
N N T N N LI g e A I S U P IAL A A AL T U VCPR T WAL VE P VY. Y APV LS

-------- .-



41 ks T
.'A "‘I PR

IND)
"‘l“l a

0y

A Ho

'yyy'

a.’

' 'J}c‘

.

o

ROUTINE Get_Box;

PARAMETFRS Fl Id IN, T IN, S IN, Cusp_Type IN, BOX VERTICES OUT
Time Overlap Min INOUT Time Overlap Max INOUT,

REFER TO GLOBAL MANEUVER_ENVELOPES IN;

DEFINED IN GLOSSARY
Time _Overlap Min
Time Overlap Max;

DEFINE VARIABLES

FL 1d Flight plan identifier of aircraft in hold
T Time of entry into hold -
S Separation criterion

Cusp_Type Type of cusp assoclated with this segment;
DEFINE TABLES
BOX_VERTICES Vertices of the extended box; fields
defined like SUBJECT BOX_VERTICES in
ROUTINE Envelope Envelope Violation
e

MANEUVER ENVELOPE TEMP Temporary copy of one record of MANEUVER

ENVELOPES, stored as a table; flelds
defined like MANEUVER ENVELOPES
vert_edge AGGREGATE(lu x,lu y,rd_x,rd y) #vertices of edge#
#defined by the start and end of the envelope in the#
#horizontal plane associated with the minimum and#
#maximum time in the envelopef;
MANEUVER ENVELOPE TEMP = SELECT FIELDS ALL
FROM MANEUVER ENVELOPES
HHERE HANEUVER_FNVELOPES F1 1d EQ F1_: Id AND MANEUVER ENVELOPES.
T time EQ T;
IF Cusp_Type EQ 'hold' OR Cusp_Type EQ 'vertical hold'
THEN #hold casef
BGX VERTICES = MANEUVER_ENVELOPE TEMP;
Calculate the coordinates of the extended holding pattern for the
holding pattern with vertices BOX_VERTICES extending it by a
distance S around its perimeter;

EISE #vertical maneuver envelopef

Calculate the coordinates of the box around the segment
MANEUVER_ENVELOPE TEMP.vert_edge a distance of S surrounding
the segment;

#override the values of the overlap times by the endpoint times#
#of the vertical maneuver, given by the right#

#downstream and left upstream vertices#

Time Overlap Min = MANEUVER ENVELOPE_TEMP.lu t;

Time Overlap Max = MANEUVER ENVELOPE " TEMP.rd . t,

Store the resulting extended box vertices back in BOX_VERTICES;

END Get_ Box;

FIGURE 4-32
GET_BOX

4-76

s

. B
. NP R U T
bt PSPPI TIPS PSS TS L TR PRV IR TR

, . s s w0 . R
[DNRY ~ AEVLIICRIAIAIED: - - SRS AP,

1
\- ;1

O R - - SN
Y N TRV S TRV TR VT Y oy o |




ROUTINE Envelope Envelope Intersect_Check;

PARAMETERS SUBJECT BOX_VERTICES IN, NOHINEE BOX_VERTICES IN, Status
0 .

DEFINE VARIABLES

Status Variable indicating the outcome of a particular Fine
Filter test;
DEFINE TABLES
SUBJECT BOX_VERTICES Vertices of the box surrounding the
- maneuver envelope of the subject in

the horizontal plane; fields defined
like SUBJECT BOX VERTICES in ROUTINE
Envelope Envelope Violation_ Check

NOMINEE BOX VERTICES Vertices of the box surrounding the
maneuvei envelope of the nominee in
the horizontal plane; fields defined
like SUBJECT BOX VERTICES;

Status = 'no violation';

REPEAT UNTIL Status EQ 'violation' OR all edges of SUBJECT BOX_

VERTICES have been tested;
Select the next edge from SUBJECT BOX_VERTICES;
REPEAT UNTIL Status EQ ‘violation" OR all edges of NOMINEE BOX_
VERTICES have been tested;
Select next edge from NOMINEE BOX VERTICES;
IF the edges selected intersect in the horizontal plane
THEN
Status = 'violation';
END Envelope Envelope Intersect_Check;

FIGURE 4-33
ENVELOPE_ENVELOPE INTERSECT CHECK

4-77

o emm— -




DEFINE VARIABLES
Status

Box _Test Vertex(4)
Regular_Line Coeff(3)

Box Line Coeff(3)

I
J

xi
X2
Yl
Y2
Test_Point

X
Y
Int_Pt(2)

X
Y
DEFINE TABLES

BOX_VERTICES

.............................

ROUTINE Edge Containment Check;
PARAMETERS REGULAR SEGMENT IN, BOX VERTICES IN, Status OUT;

EDGE_CONTAINMENT CHECK

Variable indicating whether or not the
subject and nominee segments violate
the horizontal separation criterion

Array contailning vertices of the box

Coefficients of the line through the
regular segment

Coefficients of the line through an
edge of the box

Index tracking sides of the box

Number of intersecting points
between line and lines of the box

Minimum intersection x coordinate

Maximum intersection x coordinate

Minimum intersection y coordinate

Maximum intersection y coordinate

Variable used to test point of
intersection
x coordinate
y coordinate

Points of intersection, 1f they intersect
end points of overlap of edges if edges
coincident with an edge of the box
x coordinate
y coordinate;

REGULAR_SEGMENT Pair of cusps representing the regular segment
being processed; fields defined like SUBJECT
SEGMENT in Glossary

Vertices of the box surrounding the manuever
envelope in the horizontal plane; fields
defined like SUBJECT BOX_ VERTICES in ROUTINE
Envelope Envelope Horizomtal Check;

FIGURE 4-34




N

I'd

e |

L]
NS

y YR
crld
LN N ]

-~
[y

-
[

»

LA

Status = 'no violation';

Box Test Vertex(l) = BOX_VERTICES.right_downstream vertex;

Box Test Vertex(Z) = BOX_VERTICES.right_upstream vertex;

Box Test Vertex(3) = BOX VERTICES.left downstream _vertex;

Box Test Vertex(4) = BOX VERTICES. left downstream - | vertex;

#determine equation of the line connecting vertices of#
#REGULAR_SEGMENT in the xy plane#

Regular_Line Coeff = LINE(REGULAR SEGMENT.hz first ._vtx,
REGULAR . SEGMENT .hz sec _sec vtx),

I=1;J= 0

#determine points of intersection of 1ine coincident to Edge and the#
#edge of BOX_VERTICES#

REPEAT UNTIL I GT 4 OR J GE 2
Ftest Ith edge#
Box Line Coeff = LINE(Box Test Vertex(l), Box Test Vertex(I+l));
%gEﬁhe lines Box Line Coeff and Regular Line Coeff intersect

-~ .
M Ml
s 2o'ds
* 5

-

LR

¥get intersection point#

Test Point = Box Line Coeff INTERSECTION Regular Line Coeff;

#test 1f the point lies on the edge of the box#

X1 = MIN(Box Test Vertex(I).X, Box Test Vertex(I+l).X);

X2 = MAX(Box Test Vertex(I).X, Box_Test Vertex(I+l).X);

Y1 = MIN(Box Test Vertex(I1).Y, Box Test Vertex(I+l). Y),

Y2 = MAX(Box Teat_Vertex(I).Y, Box Test Vertex(I+l).Y);

IF Te * _Point.X is in the open interval (X1,X2) AND
Tesc Point.Y is in the open interval (Y1,Y2) ~

THEN #1ies on the edgef
T I=J+ 1;

Int_Pt(J) = Test_Point;
#check for containment within the box#
IF J NE O the lines intersectf
THEN #test if Edge is contained in the box by checking 1f the#
line segment#

X1 = MIN(Int Pt(1).X, Int_Pt(2).X);

X2 = MAX(Int_Pt(1).X, Int_Pt(2). X);

Yl = HIN(Int " Pt(1).Y, Int Pt(Z) X))

Y2 = HAX(Int Pt(1). Y, Int Pt(Z) Y);

IF the projection of REGULAR SEGMENT on the x-axis is in the
interval [X1, X2] AND the projection of REGULAR SEGMENT on
the y-axis is in the closed interval [Y1, Y2]

THEN
Status = 'violation';

I =1+1; #fuext edgef

END Edge Containment Check;

FIGURE 4-34
EDGE_CONTAINMENT CHECK (Concluded)

4-79




performed. First, the regular segment is tested to see if it
intersects the extended envelope in the horizontal plane. This
test 1s performed by the element Segment Envelope Intersect
Check. If they intersect, then a violation exists and the
appropriate status message is set. In this case, the time of
violation start 1s set equal to the maximum of the time of
overlap start and the minimum of the intersection times. The
time of violation end is set equal to the minimum of the time
of overlap end and the maximum of the intersection times. If
the intersection occurs at a single point, then the end and
start time of violation are equal.

If no violation is detected, then the segment 1s tested to
check whether it is completely contained within the region of
the extended horizontal envelope. This 1is accomplished by
calling the element Edge Containment Check, described above.
If a violation is detected, then an appropriate message is set
and the time of violation start and end are set equal to the
time of overlap minimum and maximum, respectively.

Figure 4-35 illustrates a PDL version of the Segment Envelope
Violation Check element.

Segment Envelope Intersect Check

The Segment Envelope Intersect Check element tests a regular
segment of an aircraft and the extended rectangular region
about the horizontal projection of the envelope for
intersection. Each edge of the rectangular region is tested
against the regular segment to see if they are coincident and
overlap and if they intersect. If this is the case, testing
ends with a violation status and the points of overlap are
determined. If not, the edge of the rectangular region is
tested for intersection with the regular segment and the points
of intersection are determined.

In the case of a violation, the times.of violation are computed
by first computing the times associated with the points of
intersection and then determining the maximum between the Time
Overlap Min and the first time intersect in the case of the
Time ' Viol Start and determining the minimum between the Time_
Overlap Max and the second time intersect in the case of Time
Viol End. The times associated with the intersection points
are determined by interpolating using the fact that the
velocity is assumed constant for a given aircraft.

Figure 4-36 1illustrates a PDL version of the Segment Envelope
Intersect Check algorithm.

4-80

PRSC




ROUTINE Segment Envelope Violation Check;
" PARAMETERS Env F1 Id IN ENVELOPE SEGMENT IN, REGULAR_SEGMENT IN,
Seph IN, Time Overlap Min IN, Time Overlap Max IN, Tine Viol
Start OUT Time Viol End OUT, Status OUT;
DEFINED IN GLDSSARY
Nominee F1l Id
Time Overlap Min
Time Overlap Max
Time ' Viol Start
Time ' Viol End;
DEFINE VARIARLES
Env F1 Id Flight identifier of maneuver envelope segment
Status Variable indicating the outcome of a paricular Fine
Filter test
Seph Horizontal separation criterion;
DEFINE TABLES
ENVELOPE_SEGMENT Pair of cusps representing the segment being
processed for the segment that is in a
maneuver envelope; fields defined like
SUBJECT_SEGMENT in Glossary
REGULAR SEGMENT Pair of cusps representing the segment
being processed for the regular segment;
flelds defined like ENVELOPE SEGMENT
BOX_VERTICES Vertices of the box surrounding the maneuver
envelope in the horizontal plane; fields

defined like SUBJECT BOX VERTICES in ROUTINE

Envelope Envelope ] Horizontal __Check;

FIGURE 4-35
SEGMENT_ENVELOPE _VIOLATION CHECK

. . [
a
.E_-LMLLA- LA‘A‘-A‘LA_\AXAZ

:
"

S
e
'4
~d
ud



#get the coordinates for the nominee hold extended a distance#
#of Seph about its perimeter#
CALL Get Box(Env_F1 Id IN, ENVELOPE SEGMENT.first cusp_t IN,
Seph IN ENVELOPE SEGMENT.first -_cusp_type IN, BOX VERTICES our,
Time Overlap Min INOUT, Time Overlap Max INOUT);
#test if the box around the envelope and the requ. reqular segment#
#intersect#
CALL Segment Envelope Intersect Check(BOX_VERTICES IN, REGULAR
T SEGMENT IN, Time Overlap_ Min IN Time Overlap Max IN, Time V:I.ol
Start OUT, Time Viol ] End OUT, “Status OUT),
IF Status EQ 'mo violation'
THEN
Fcheck 1f regular segment is contained in box#
CALL Edge Containment Check(REGULAR SEGMENT IN, BOX VERTICES IN,
Status OUT);
IF Status EQ 'violation'
THEN
T:lne Viol Start = Time Overlap Min;
Time ' Viol “FEnd = Time Overlap ) Max;
END Segnent Envelope Violation Check;

FIGURE 4-35
SEGMENT_ENVELOPE_VIOLATION CHECK (Concluded)




»

O
'
..J

[ »
AL
a a & a

OORLES ! 1

J.'} FAC A

\'f

ANl

bt

ROUTINE Segment Envelope Intersect Check;

PARAMETERS BOX_VERTICES IN, SEGMENT IN, Time Overlap Min IN, Time
Overlap | Max IN, Time ! Viol Start OU'I‘ Time  Viol | End OUT, Status
OUT;

DEFINED IN GLOSSARY
Time Overlap Min
Time Overlap Max
Time V:lol Start
Time '  Viol | ._End;

DEFINE VARIABLES

Status Variable indicating the outcome of a
particular Fine Filter test
Int_Pt(2) Points in x,y,t of intersection between the
box and segment
T t coordinate
Hz_comp Horizontal coordinates
X x coordinate
Y y coordinate
Test_Box Edges(4)  Array of edges used in testing for
intersection
first x x coordinate of first vertex
first y coordinate of first vertex
second x x coordinate of second vertex
second y y coordinate of second vertex

Line Segment Coeff Coefficients of the equation of the line
passing through all points of the segment
named SEGMENT

Line Box Coeff Coefficients of the equation of the line
passing through all points of an edge of
the box defined by the vertices BOX
VERTICES

I, J Indices for looping;

DEFINE TABLES

BOX_VERTICES Vertices of the box surrounding the manuever
envelope of the segemnt being considered;
fields defined like SUBJECT BOX VERTICES in
ROUTINE Envelope Envelope Horizontal Check

SEGMENT Pair of cusps representing the regular segment
being considered; fields defined like SUBJECT
SEGMENT in the Glossary;

FIGURE 4-36

SEGMENT_ENVELOPE_INTERSECT_ CHECK

4-83




DR

o, 'b *
SISLrLLS

Test_Box Edge(l) = BOX VERTICES.edgel; #temporary array of box edges#

Test_Box_Edge(2) = BOX_VERTICES.edge2;

Test_Box Edge(3) = BOX_VERTICES.edge3;

Test_Box Edge(4) = BOX VERTICES edgeé;

Status = 'no violation'

I= 1. J = 0:

#detetline the coefficients of the line passing through SEGMENT#

Line Segment Coeff = LINE(SEGMENT.hz first vtx, SEGMENT.hz sec_vtx);

#determine the points of intersection#

REPEAT UNTIL J 2 OR all edges of BOX VERTICES have been tested;
Line Box Coeff = LINE(Test_Box : Edge(T)); #line through Ith edge#
IF Line Box Coeff EQ | EQ Line Segment Coeff AND the edges (SEGMENT.hz

first_vtx, SEGMENT.hz sec_vtx) and Test_ Box Edges(I) overlap

THEN #1ines coincide , get intersect end pts#

~ Status = 'violation';

Int Pt(1).X = m(lﬁN(SEGtENT first_x, SEGMENT.second x),
MIN(Teet Box Edges(I) first x, Test Box_Edges(I).second | x));

Int Pt(2).X = HIN(HAX(SEGHENT first . x, “SEGMENT. second | x),
mx('l‘est Box Edges(I) first_x, Test Box Edges(I). second | x)); )

Int Pt(1).Y = MAX(MIN(SEGMENT.first_y, SEGMENT.second y), ‘

P
.

HIN(Test Box_Edges(I).first y, Test_Box Edges(I).second y));
Int Pt(2).Y = MIN(MAX(SEGMENT.first_y, SEGMENT.second y), !
MAX(Test Box x_Edges(I).first_y, Test Box Edges(I). second_y)) 1
EISE ftest for unique intersect point#
T IF SEGMENT and Test Box Edge(I) intersect in the (x,y) plane
THEN
T JI=J+1; ‘
Status = 'violation';
Int Pt(J) = Line Box Coeff INTERSECTION Line Segment Coeff;
I=1I+1; fnext edgef
IF Status EQ 'violation'
THEN fobtain the times of violation#
T FORJ = 1 TO 2; #fcompute the intersect points' time coordinatest
Int . Pt(J). T = (SEGHENT first t - SEGMENT.second t) *
(DIST(SEGMENT.hz first - ._vtx, SEGMENT.hz sec_vtx) /
DIST(SEGMENT.hz first_vtx, Int Pt(J) Hz_Comp)) +
SEGMENT.first t,
Time Viol Start = MAX(Ti-e  Overlap_Min, MIN(Int_Pt(1).T, Int_
PE(2).T);
Time Viol End = MIN(Tine _Overlap Max, MAX(Int Pt(1).T, Int_
Pt(2).7);
IF Time Viol _Start EQ Time Viol End
THEN #no violation as they intersect in a point#
T Status = 'no violation';
END Segnent_Envelope_Intersect_Check; |

e AT el el

Py

FIGURE 4-36
SEGMENT ENVELOPE_INTERSECT CHECK (Concluded)

4-84

---------------
...............................




-

4.3.5 Encounter List Builder

4.3.5.1 Mission

The mission of the Encounter List Builder is to insert into the
global table, ENCOUNTERS, information describing the violation
detected by the three previous components (Time Check, Altitude
Check, and Horizontal Check) of the Fine Filter. Given that a
complete encounter may extend over several segments for one or
both aircraft, this information may describe only part of an
encounter. Under such circumstances, the information is merged
with data associated with other portions of the encounter, if
the data is already in the table as a result of previous
iterations of the Fine Filter.

The ENCOUNTERS table is a source of encounter information
v available for use in the display provided to the controller.

Fes W
PR

“~
o 4.3.5.2 Design Considerations and Component Environment

snpu l

The 1ist of inputs to the Encounter List Builder consists of
. all those 1local tables and parameters which are wused to
> describe the violation. They include the subject and nominee
aircraft segments (SUBJECT SEGMENT and NOMINEE SEGMENT), unique ]
identifiers for the subject and nominee aircraft flight plans

(Subject F1 1d and Nominee F1 Id), advisory violation start and ﬁ
end times (Advisory Time  Viol Start and Advisory Time Viol
End), priority violation start and end times (Priority Time_
N Viol Start and Priority Time Viol End), time of minimum R
separation between the aircraft in the horizoutal plane (Time
Msep), and minimum separation distance in the plane (Hsep
Dist). In addition, the Encounter List Builder accesses the
¥ global table ENCOUNTERS which it updates with information from
the current encounter or portion of an encounter.

P

Output

The output of the Encounter List Builder is an updated version
of the ENCOUNTERS Table.

4.3.5.3 Component Design Logic

The Encounter List Builder 1is called by the Fine Filter
whenever the subject-nominee segment pair under consideration
passes through the checks in the Time Check, Altitude Check,
“\ and Horizontal Check elements. It, in turn, calls the element

4-85

X
L]
n
a
|

B T O T T v T
........................ . e e s
PRTAPI IS R Y. T G e

......



.t 'J.‘"/.-,“

< .l'.‘
1]

i e L TR T Te e W T
--------------- * . : oot -

Violation Boundaries, which calculates the spatial coordinates
of the two aircraft at the start and end of the advisory
violation, and the elements Prefix Merge and Suffix Merge,
which essentially merge the data associated with the current
violation with that already in the table 1if the current
violation 18 found to be part of an already identified
encounter,

As indicated in Figure 4-37, which shows a PDL representation
of the Encounter List Builder algorithm, Violation Boundaries
is called first. The algorithm then iterates through each
record in the global table ENCOUNTERS, searching for tu?2
possible occurrence of an encounter portion that immediately
precedes or follows the current violation. Specifically, if the
advisory violation end time of a record in the table is equal
to the advisory violation start time of the current violation,
then the record defines an encounter portion which immediately
precedes and adjoins the current violation. _
circumstance, the Encounter List Builder Algorithm calls Prefix
Merge which compares the data in the record with that of the
current violation and changes the values of the violation
parameters 8o they are descriptive of the merged encounter
portions.

Similarly, if the advisory violation start time of the
ENCOUNTERS record is equal to the advisory violation end time

of the current violation, then the record describes an
encounter portion which immediately follows the current
violation. Suffix Merge is called to re-evaluate the violation

parameters so that the parameters describe the merged encounter
portions.

Subsequent to each merge, the corresponding record im the
ENCOUNTERS Table is deleted. Once all of the records in the
table are tested, the new violation parameters are inserted in
the table in the form of a new record. If the table does not
contain portions of the same encounter as the current
violation, the algorithm simply inserts the unaltered values of
the violation parameters (as calculated by the Horizontal Check
element) directly into the table.

It should be noted that if the table contains an encounter
portion that precedes the current violation and another portiom
that follows it, the algorithm will combine all three portioms,
and the data inserted into the table will describe the new
encounter or encounter portion. In the following paragraphs,
the phrase "current violation” is used to refer to either the
violation identified by the Fine Filter 1in this iteration or

4-86

Under such a

e @ v ¥ T .7




v
.
.
J
‘4
Be.’'a'a'a's 2 o B L4 X

ROUTINE Encounter _List Builder;

PARAMETFRS SUBJECT SEGHENT IN, NOMINEE SEGMENT 1IN, Subject_F1 Id IN,
Noainee F1 Id IN Advisory Time Viol . Start IN, Advisory Tine
Viol | End IN Priority Time | Viol Start IN, Priority Time | Viol . End
IN, Time )bep IN, Hsep Dist IN-

REFER TO GLOBAL Advisory Sept _Ig Priority Sept IN, ENCOUNTERS INOUT;

DEFINED IN GLOSSARY
Subject Fl Id
Nominee . F1 . Id
Advisory Time _Viol Start
Advisory Time | Viol ._End

. Priority Time | Viol Start

. Priority_Tine_Viol_End

Time Msep

Msep Diat

Subject Viol Start Pt

Subject Viol End Pt

Nominee ! Viol Stsrt _Pt

Nominee | Viol ._End | Pt

SUBJECT SEGHENT

NOHINEE__SEGHENT,

5

FIGURE 4-37 5
ENCOUNTER LIST BUILDER 1
P

A

4-87 y

]

Pl -4

_____________________________
...................................

PR A SR . » L e . N Y Y A N
PO/ SO W G W W G W R G 2P O et N W L A et 2 4 s o L.LlLiL‘ALLL_k_




Lt L 3 el Avths AERL SrGLArGL it el R A A0

# calculate the spatial coordinates of the subject and nominee #
# aircraft at the start and end of the violation #
CALL Violation Boundaries (SUBJECT SEGMENT IN, NOMINEE SEGMENT
IN, Advisory Time Viol Start IN, Advisory Time Viol End 1IN,
Subject Viol Start Pt OUT, Subject Viol End Pt OUT Nominee
e Viol Start Pt OUT, Nominee Viol End_Pt OUT);
) REPEAT FQ FOR EACH ENCOUNTERS RECORD
WHERE ENCOUNTERS . first £f1 1d K . id EQ Subject_F1 Id AND ENCOUNTERS.

i

~~
“
hS
S
\ Y
“~

Y
o
WRY
",‘
'~
-
)
-
-

[ )

e ~ second fl id EQ Nominee F1 1d;
;éi # if the data in this record describe an encounter portion which #
a; # adjoins the newly detected encounter, re-evaluate the violation#
N # parameters so that they describe the combined encounter #
" IF ENCOUNTERS.adv_viol end time EQ Advisory Time Viol Start
A THEN
ii CALL Prefix Merge (ENCOUNTERS IN, Advisory Time Viol Start
f e INOUT, Priority Time Viol : Start INOUT, Priority Ti-e Viol
[{i End 1) INOUT, Msep ] y Dist . INOUT, Time Msep INOUT, Subject Viol
ot Start_Pt INOUT, "Nominee Viol Start Pt INOUT),
T~ DELETE FROM ENCOUNTERS; #Remove current record being#
a4 ¥considered#
o ELSE
::j IF ENCOUNTERS.adv_viol start time EQ Advisory_Time Viol End
Oy THEN
\E T CALL Suffix Merge (ENCOUNTERS IN, Advisory_Time Viol End
{ INOUT, Priority Time Viol Start INOUT, Priority Time_

g0y Viol End INOUT, Msep Dist INOUT, “Time  Msep INOUT,
. Subject Viol End Pt INOUT Nominee Viol End Pt INOUT),
DELETE FROM ENCOUNTERS;
# record the encounter data #
R INSERT INTO ENCOUNTERS (first f1 id = Subject F1 Id, second fl id =
. Nominee F1 Id, adv_viol start " time = Advisory Time Viol Start,
< adv_ viol end | time = Advisory Time Violation End, display as

4i' advisory time = Advisory Time Viol Start - Advisory Sept, prior
X0 viol _start_time = Priority Time ) Viol Start, prior_viol _end_time =
a0 Priority Time  Violation End display as priority time = Priority

Time | Viol Start - Priority Sept, msep_ time = Time  Msep, msep

- distance = Msep Dist, f11 ° viol ._start pt = Subject Viol Start Pt,
35 f11 viol end_pt = Subject Viol _ End Pt, £12 viol start_pt =

e Nominee_Viol Start Pt, £12 viol end_pt = Nominee Viol End Pt);

. END Fncounter List Builder,

FIGURE 4-37
ENCOUNTER LIST BUILDER (Concluded)

o 4-88




N e a0, T
Ca P A

..
<.
.
L
Rt
.
»
&,
" e
-Il
LY
-
*
RS
<.
A
‘.
A
e
,

Figure 4-39 contains a PDL presentation of the Prefix Merge
Algorithm.

Suffix Merge

This element provides values for the parameters of the complete
encounter or encounter portion that results from the merging
of the current violation and the encounter portion which
follows it in time. The data for the encounter portion which
follows it in time 1is contained in the single record table
called SUFFIX. The general nature of the Suffix Merge
algorithm 1s the same as that of Prefix Merge. Only the list of
parameters that are reset is different.

Figure 4-40 contains a PDL presentation of the algoritha.

4.4 Maintenance

The role of the Maintenance subfunction is to maintain updated
versions of the various global and shared local tables used by
FPCP. Whenever the stimulus that invokes FPCP indicates a
trajectory update, and the nature of this update is a revised
flight plan, an outbound flight or a terminated flight, all
references to the flight identification are removed in the
shared local tables SPARSE TREE, ALLOBJECT BLOCKS,
ALLOBJECT TREE, and in the global tables SPARSE CELLS and
ENCOUNTERS. The removal of the references to the flight
identification from all but the ALLOBJECT BLOCKS and the
ALIOBJECT TREE tables 1is a trivial process involving the
deletion of appropriate records from these tables. Hence, the
proceegg is not discussed further here. On the other hand,
removing the references to the flight identification from the
ALLOBJECT BLOCKS and ALLOBJECT TREE tables is not trivial. The
routine that accomplishes this task, Delete Aircraft, is
considered to be a principal component of the Maintenance
subfunction.

After the data associated with an aircraft with a revised
trajectory have been removed from the appropriate tables, the
various Coarse Filter and Fine Filter tests are invoked. These
same tests are invoked directly (without any prior updating of
the tables by Maintenance) for a new trajectory, a horizon
update, and a trial probe. In the case of a trajectory update
(new or revised) or a horizon update, onc: he tests are
completed, the subject aircraft is referenced as an object
aircraft in the tables. Thus, information about its trajectory
gets included in the ALLOBJECT_TREE table. The
ALLOBJECT BLOCKS Table is modified to reflect the new occupancy

4-91

................. .
.......... .« PN

IR SV RV EVEN RPN Y 4 NN




{ ROUTINE Prefix Merge;
PARAMETERS PREFIX IN, Advisory Time Viol Start INOUT, Priority Time
Viol Start INOUT, Priority Time Viol End INOUT, Msep Dist INOUT
" Time |  Msep INOUT, Sub ject ! Viol Start Pt INOUT, Nominee ' Viol Start_
N Pt INOUT;
x DEFINED IN GLOSSARY
Advisory Time Viol Start
N Priority Time Viol Start
Priority Time Viol End
- Msep Dist
- Time |  Msep
Subject Viol Start Pt
Nominee | : Viol | Start Pt;
) DEFINE TABLES
- PREFIX Single record table which contains data
0 describing an encounter portion which
$: immediately precedes the current encounter
5 portion in real time; fields defined like
- global table ENCOUNTERS;
W Advisory Time Viol Start = PREFIX.adv_viol start_time;
! IF PREFIX.prior viol start_time NE NULL
N
ot THEN
v: Priority Time Viol Start = PREFIX.prior_viol start_time;
2 IF Priority Time Viol End EQ NULL
{ THEN
Priority Time Viol End = PREFIX.prior_ viol end time;
o IF PREFIX.msep_distance NE NULL AND Msep Dist NE NULL
- THEN
- IF PREFIX.msep distance LT Msep Dist
N THEN
Hsep Dist = PREFIX.msep distance;
S Time |  Msep = PREFIX.msep_time;
- ELSE
" T IF Msep Dist EQ NULL
’ THEN
Msep Dist = PREFIX.msep distance;
Time |  Msep = PREFIX.msep_! time'
Subject Viol Start Pt = PREFIX.f1ll viol start_ pt;
Nominee ' Viol Start Pt = PREFIX.f12 - viol start pt;
END Prefix Herge,
FIGURE 4-39
.. PREFIX MERGE
4
% 4-92
2
‘.n
-
v
,
7

...................
....................
- . . G T N T TR Tt SRS

- '...~ o :.q .




Bl el g s At vl il s £ ad g e et N S R e S N L R A

ROUTINE Suffix Merge;

PARAMETERS SUFFIX IN, Advisory Time Viol End INOUT, Priority Time
Viol Start INOUT, Priority Time | Viol End INOUT Msep Dist INOUT,
Time Msep INOUT, Subject Viol . End Pt INOUT Nominee Viol End Pt
INOUT;

DEFINED IN GLOSSARY
Advisory _Time Viol End
Priority Time | ' Viol ! . Start
Priority Time | Viol End
Msep ] Dist
Time |  Msep
Subject Viol End Pt
Nominee Viol  Pnd | | Pt;

DEFINE TABLES
SUFFIX Single record table which contains data

describing an encounter portion which
immediately succeeds the current encounter ]
portion in real time; fields defined like
global table ENCOUNTERS;

Advisory Time Viol End ™ SUFFIX.adv_viol end time;

IF Priority Tile Viol End EQ NULL

THEN )
Priority Time Viol Start = SUFFIX.prior_viol start_time;
Priority Time Viol End = SUFFIX.prior_viol_end time;

ELSE
;g SUFFIX.prior_viol end time NE NULL
THEN

Priority Time Viol End = SUFFIX.prior viol end time;

IF SUFPIX.Isep distance NE NULL AND Msep_. Dist NE NULL

TBEN
~ IF SUFFIX.msep_distance LT Msep Dist
THEN

Hsep Dist = SUFFIX.msep distance;
Time |  Msep = SUPFIX.nsep time;

Aiasa LKA A A A & G . W A e

M. X X BT VS

ELSE
IF Msep Dist EQ NULL
THEN

Msep Dist = SUFFIX.msep_distance;

Time Msep = SUFFIX.msep time;
" Subject Viol End Pt = SUFFIX. f11 . viol end pt;
0% No.inee Viol | End Pt = SUFFIX.f12 viol eni_pt,
> END Suffir_ﬂerge,

R U IR SRS APE ) VA ara R ar L R S

3

\ FIGURE 4-40 .
-J SUFFIX MERGE -
=7 ji
o} :
S 4-93 :
; \




P

count of each block. This 1s all accomplished by Insert
o Alrcraft, the second of Maintenance's two components.

For the case of the trial probe, the ALLOBJECT ' TREE and
ALIOBJECT _ BLOCKS tables are not altered. This is to prevent a
T new subject trajectory from being declared in conflict with the

oo trial trajectory while a controller decides whether to accept a
SN trial flight plan or not. In either case, whether a trial

trajectory is accepted or not, all references to the trial
flight identification are  removed from SPARSE CELLS,
SPARSE TREE, and ENCOUNTERS once the controller's decision 18
entered into the automation system,

Figure 4-41 1llustrates the organizational structure of the
Maintenance subfunction. :

4.4.1 Delete Alrcraft

.
DTN

4.,4.1.1 Mission

- The purpose of the Delete Aircraft component is to remove
obsolete data in ALLOBJECT TREE and ALLOBJECT BLOCKS pertaining

~5 to the aircraft under consideration by the Maintenance
o subfunction. This occurs every time that a trajectory is
'.:-3: revised due to resynchronization or a request for a flight plan
L change. The intent is to "clean the slate” before invoking the

Coarse Filter, thus making it possible for the Coarse and Fine
Filters to treat this aircraft as if it were ‘a mnew subject

-
' " aircraft entering the planning region.

., 4.4.1.2 Design Considerations and Component Environment
A)

A‘l.

: The Delete Aircraft routine 1is invoked by the Maintenance
5 subfunction whenever the trajectory of an aircraft in the
T, planning region is revised. A discussion of the tree traversal

technique used in this algorithm is given in Appendix C.

)
T
"..-

Inmt

Y The 1inputs to the Delete Aircraft component consist of a
combination of global tables, shared local tables and
BN variables, and input parameters. The input parameters to the
. routine are Current Node Id, which identifies the node
currently being traversed in a search of the subtree to be
deleted, and Level, which specifies the node's level. Shared
. local data consist of the SPARSE . TREE and ALLOBJECT BLOCK
O tables and the variable Max ] Level.  SPARSE . TREE defines the
structure of the tree associated with the subject aircraft.

+ d

Y

oy tete o, 8,
I‘ 0‘ l. l‘ .
a“ AL e 10

4-94

%

LA
%

...............




Al T LA AR (L S
— —— o e - it R e SOCR of ‘l‘\-_v-;r‘\v_?',v:“d'.-~i'.:_*.'..r..'_'vn"_‘:'?__~_ RS R Gl
AT a1 wira A de A AR AIEERMERA L SRS S ST ot . ta

FPCP

MAINTENANCE

Section 4.4

DELETE AIRCRAFT INSERT AIRCRAFT

Section 4.4.1 Section 4.4.2

FIGURE 4-41
MAINTENANCE ORGANIZATIONAL STRUCTURE

R

4-95

NSO TP PLINS b SN

L

o
N
By
L et A, ae e e TRt et T NN Tt Ty e . R
T T T A T e e T AT T e R T T
RPN . et ‘1‘.'~' '-';";1'31';'.5.'.;'.‘.'._h'.\: R R T, A W R T TR TP Ui 0, R I AT PE N PP PR L ot ad
o2 P Y . PN




s

Y

o g
W)

[

o S ':4'}"’ [y

7 AR

e
e 4

"
N AR
.

A

. 4,

EARRRS

Y

L e

EheCle
‘...0. v *°3

------
..........

The table includes data for other aircraft as well; the
specific subject being referenced 1is keyed on the global
variable Subject_F1 Id. ALLOBJECT BLOCKS contains the
occupancy count (that 1s, the number of aircraft in a given
block) of the current root and 1s keyed on Current Node Id.
The shared local parameter Max Level specifies the cell (leaf)
level of the tree. Finally, the global table ALLOBJECT TREE,
which is both input to and updated by the element Delete
Subtree, defines each node and all its children in the
subject's tree.

Output

The Delete Aircraft and Delete Subtree routines update both
ALLOBJECT_TREE and ALLOBJECT BLOCKS by deleting the appropriate
records from each table as described below.

4.4.1.3 Component Design Logic

The Delete Aircraft algorithm 1is recursive. The algorithm
performs a preorder traversal through the tree searching for a
subtree to delete. Once found, a post order traversal of that
subtree is performed to delete each node of that subtree. Each
invocation corresponds to a move down the octal tree modelled
by the table ALLOBJECT TREE. Essentially, Delete Aircraft
gsearches those nodes (or, equivalently, blocks of the (x,y,t)
Coarse Filter grid) in ALLOBJECT TREE which are occupied by the
subject aircraft. If the subject aircraft is the sole occupant
of the input node (or, more accurately, of its corresponding
block), the entire subtree (whose root is the input note) is
deleted. Deletions of such subtrees are performed by the
element Delete Subtree (which 1is itself recursive). If the
subject aircraft 1s not the sole occupant, the algorithm
reduces the current value of Occupancy Count in the table
ALLOBJECT BLOCKS associated with the node by one. It then
loops on “the node's children, calling itself whenever one of
the child nodes is occupied by the subject aircraft.

Figure 4-42 shows a PDL representation of the Delete Aircraft
algorithm,

Delete Subtree

The Delete Subtree element performs a postorder traversal of
the ALLOBJECT TREE starting at the node whose Occupancy_Count
is 1. First, the ALLOBJECT BLOCK record involving the root
node 18 deleted. Then Delete Subtree calls itself for a given
child of the root node and recursively traverses the tree until

4-96

..............................

...............

------




s VAT w TR . T T e,

AN 2 2 e & S i AR Al Se e S eat e i DA

LA

-l
:l'_i
i ROUTINE Delete Aircraft; {4
~ PARAMETERS Subject F1 Id IN, Current Node In IN, Level IN; ;
& REFER '1'0 SHARED LOCAL SPARSE_TREE IN, Max Level IN, ALLOBJECT_BLOCKS j1
F DEFINE vuumns .
- Subject_F1 Id Unique identiftier for the flight plan of the R
subject aircraft 1
- Current Node Id Identifier of the current root of the subtree ]
: being traversed _
Level Current level of the root of the subtree being ‘]
traversed :

Occupancy Count Number of aircraft co—occupying the block;
IF Level LT Max Level :
THEN #block levell
test to see if the subject is the only aircraft in block#
# of the ALLOBJECT tree#
SELECT FIELDS occupancy count
INTO Occupancy | Count
FROM ALLOBJECT_ BLOCKS
WHERE ALLOBJECT BLOCKS.node id EQ Current ._Node_Id;
IF Occupancy Count EQ 1 #last onef
#delete the subtree with root equal to Current Node Id#
" CALL Delete :_Subtree(Current Node Id IN, Level IN);
EISE #more than one aircraft in the block#
#reduce number of aircraft in the block#
UPDATE IN ALLOBJECT_ BLOCKS
occupancy_count = occupancy_count - 1)
WHERE ALLOBJECT BLOCKS.node id EQ Current Node Id;
#compare children of the SPARSE tree and the ALLOBJECT tree#
#to see which subtree if any should be deletedf
REPEAT FOR EACH SPARSE_TREE RECORD #for each child#
¥the SPARSE tree is identified by the flight plan id andf
#the children are identified by all records with the#
#same node id (e.g. Current Node Id)#
WHERE SPARSE ° TREE. F1 Id EQ Subject Fl Id AND
T SPARSE TREE.node 1d EQ Current | Node 1d;
#recursively check to see if the subtree with root node_id#
fequal to SPARSE TREE.child id should be deleted#
CALL Delete Aircraft(SPARSE TREE.child id IN, Level+l IN);
END Delete Al Aircraft,

FIGURE 4-42
DELETE AIRCRAFT



: e the leaf level 1is reached. Once the leaf 18 reached, this
routine returns to the previous level and deletes the
ALIOBJECT_TREE record associated with the root at that level.

., It then invokes itself for the next child, continuing until all
'I;: children have been processed and then returns to the previous
:j. level and repeats the process.

ple

‘-ﬁ Figure 4-43 shows a PDL representation of the Delete Subtree

algorithm.

o 4.4.2 Insert Aircraft

~

o 4.4.2.1 Mission

~

The mission of the Insert Aircraft component of Maintenance is

Ty to modify the ALLOBJECT TREE and ALLOBJECT BLOCKS in order that
§3 they include the trajectory data of the subject aircraft. This
Q) is accomplished by combining (obtaining the union of) the
) ‘:‘ ALLOBJECT TREE and the SPARSE TREE records associated with the
1y subject aircraft.

> 4.4.2.2 Design Considerations and Component Environment

4
::4: The Insert Aircraft component £is invoked by the Maintenance
subfunction after a new or revised subject aircraft trajectory
< has been processed by the Coarse and Fine Filters. A

discussion of the tree traversal techniques used by this
algorithm is given in Appendix C.

Iggut

The inputs to the Insert Aircraft component are basically the
same global tables, local shared tables and variables, and

input parameters that are required by the Delete Aircraft
- component (Section 4.4.1, Delete Aircraft). In Delete
ot Aircraft, the SPARSE TREE records refer to the tree prior to
o any trajectory revisions, whereas in Insert Aircraft, they
~ refer instead to the tree after the revisions have been made.

- Output

>

g Like Delete Aircraft, Insert Aircraft 1is a recursive
- algorithm. Every invocation results in a modification of the

ALLOBJECT TREE and associated data in ALLOBJECT '_BLOCKS, which
are the outputs of this routine. When the process is finished,
the output is a new ALLOBJECT TREE containing references to the
trajectory data for the subject aircraft.

4-98

NNNN

H A AN
MR 1




T W W T e TR TN W T Y REWL
- b A et el s 2au S - s P Y e anei ae i e i g S L ARcd AAERR ARSI A )
s jamre 2t aiede sauit S St 20 AL APRE RO R S B S e S @ e T - C—
- A 2R M i I

Bory L a e A Seetmem e td

ROUTINE Delete Subtree;

v PARAMETERS Current Node Id IN, Level IN;.

NEI REFER TO SHARED LOCAL ALLOBJECT TREE INOUT, Max Level IN,

. ALLORJECT BLOCKS INOUT;

. DEFINE VARIABLES

S Current_Node Id Identifier of the current root of the subtree

being traversed ,
Level Current level of the root of the subtree being
traversed;

IF Level LT Max Level
n THEN
. DELETE FROM ALLOBJECT BLOCKS #delete records corresponding to the#
Ftree that will be deleted#
WHERE ALLOBJECT BLOCKS.node id EQ Current Node Id;

‘,:f #delete subtree nodes#

. REPEAT FOR EACH ALLOBJECT TREE RECORD #for each child#
Y. Ttlf:i children are identifed by all records with the same node #
- d#

WHERE ALLOBJECT TREE.node id EQ Current Node Id;

#delete next level of the current subtree referenced by the#
N #childé '
> CALL Delete Subtree(ALLOBJECT TREE.child id IN, Level+l IN);
DELETE FROM ALLOBJECT TREE; #delete current child record';_f

%) Fthe record to delete 18 known from the above WHERE clausef
ELSE; #nothing to delete at leaf level, since the leaf node is#

3 freferred to by the last non-leaf node. This reference 1s#

~ #to SPARSE CELLS#

3 END Delete Subtree;

FIGURE 4-43
DELETE SUBTREE

%
;
A
1

[P B U I R SR A P PR R




Vé

l‘. 1}
v %y
»

a8

a e
4
»

Ly
B
LA

"l
e

2,

Phi
'.’.

" SANYEN ‘ A

..‘i"""“,.""(-i'rrv_'

4.4.2,3 Component Design Logic

The Insert Aircraft algorithm is a recursive procedure. Each
invocation of the algorithm corresponds to a move one level
down the ALLOBJECT TREE. In essence, the algorithm copies all
those nodes which are in the SPARSE TREE associated with the

subject aircraft, but not in the ALLOBJECT TREE, and attaches
thed it AT Froper poa1tions of the ALLOBIECT TRER.

The algorithm begins by adding one to the current value of the
occupancy count in the ALLOBJECT BLOCK associated with the root
(that 1s, key on Current_Node_Id-5. This is to indicate that a
new aircraft has been added to the 1list of object aircraft in
the ALLOBJECT TREE. The algorithm then loops on the children
of the SPARSE_TREE and ALLOBJECT TREE roots in parallel (that
1s, all records with node id equal to the Current Node Id). If
it finds that a child node exists in the SPARSE TREE, but not
in the ALLOBJECT TREE, it adds records to the ALLOBJECT TREE
assoclated with the current root and all children found in
SPARSE TREE. The outcome is the creation of a new version of
the ALLOBJECT TREE which contains a new node indicating
occupancy of a block that was previously unoccupied. Following
this procedure, the algorithm invokes itself, replacing the
previous root by the child node it has just created in
ALIOBJECT TREE and the parallel child node in the SPARSE TREE.
It increments the value of Level by one, signifying that the
following iteration will focus on the next level down in the
two trees. This process will be repeated until the last level
of both trees is reached.

In addition to invoking itself whenever a node is copled, the
algorithm also invokes itself if it discovers that a child node
exists im both trees. The new roots become the node
identifiers associated with the two child nodes and the value
of Level is incremented by one.

During each iteration of the algorithm, Level is compared to
Max Level. If it 18 determined that Max Level has been
reached, the algorithm returns to the previous level and
repeats the process for the next child at that level.

Figure 4-44 shows a PDL version of the Insert Aircraft
algorithm.

4-100

L A S A A i T i
BAASEROACIACINCIPLE




F.
i

d

ROUTINE Insert Aircraft;
PARAMETERS Subject F1 Id IN, Current Node Id IN, Level IN;
REFER TO SHARED LOCAL SPARSE TREE IN, AI..LOBJECT TREE INOUT Max
Level IN, ALLOBJECT | BLOCKS INOUT°
DEFINE VARTIABLES
Subject_F1 Id Unique identifier for the flight plan of the
subject aircraft
Current Node Id Identifier of the root of the curreamt subtree
being traversed
Level Level of the root of the current subtree;
IF Level LT Max Level
5 THEN
fcheck 1f block already exists#
IF COUNT(ALLOBJECT BLOCKS.node_id EQ Current Node Id) EQO
THEN #new block, add it#
 INSERT INTO ALLOBJECT BLOCKS (node_id = Current_Node Id,
occupancy_count = 1);
ELSE #block already exists, update count#
~ UPDATE IN ALLOBJECT _BLOCKS (occupancy_count ™ occupancy count +
1
WHERE ALLOBJECT BLOCKS.node id EQ Current Node Id;
REPEAT FOR EACH SPARSE TREE RECORD #for each child#
¥the SPARSE tree is identified by the flight plan id. and thef
#children are identified as all records with the same#
#fnode_1d (that 1s, Current_Node Id)#
WHERE SPARSE TREE.node_id EQ Current Node_Id AND SPARSE
" TREE. f1 . 1d EQ Subject F1 1d;
#check for matching child block in the ALLOBJECT tree#
IF COUNT(ALLOBJECT TREE.node_id EQ Current Node Id AND
ALLOBJECT TREE.ch:lld id ? SPARSE TREE.child :l.d) EQO
THEN #child Block not found
fadd child to ALLOBJECT tree#
INSERT INTO ALLOBJECT TREE (node id = Current Node Id,
child 1d = SPARSE_TREE.child 1d);
#check next level for insertion#
CALL Insert Aircraft(SPARSE TREE.ch:I.ld id IN, Level + 1 IN);
EISE; Tnothing at leaf to create, since the leaf node data isf
#referred to by the child of last nonleaf node. The#
#leaf level data is in SPARSE_CELLS#
END Insert Aircraft;

7,

s "‘:“.

€. 2”8
VL DAA

DAY
s 8 -

FIGURE 4-44
INSERT AIRCRAFT

4-101




(e

Y 4 s T ’ N oo
e B B ) A o AN ARG AN LA S R S

APPENDIX A

FLIGHT PLAN CONFLICT PROBE DATA

SPARSE_TREE:

g

FL_ID | NODE_ID | CHILD_ID

+ —+

This table defines the blocks of the airspace grid through which
each flight plan trajectory passes and their relationships to larger
blocks in the grid.

FL_ID Unique identifier which distinguishes one flight
Plan from all other flight plans currently
defined on the system

NODE_ID Unique identifier of a block of airspace in an x,y,t
grid

CHILD ID Unique identifier of a block of airspace in an x,y,t
grid which is an octant of that given by NODE_ID

A-1




"\'-n'.n'.'; ‘

\‘.I .l \ ‘1:.

Lt + ‘
. )
: * ‘v .-‘

Ll d
v e e

)
.A

BUFFER_CELLS:

g —

NODE_ID | min 2z | max z | entry _time | exit time

- — -

This table defines the cells in the vicinity of the flight plan
trajectory of the subject aircraft, the range of altitudes the
trajectory covers in each cell, and the times associated with the
cusp preceding entry and the cusp following exit for each cell.

NODE_ID

min z

max z

entry_time

exit time

Unique identifier of an airspace cell in an x,y,t
grid

The lowest altitude through which the subject
aircraft's trajectory passes in the vicinity of
this cell

The highest altitude through which the subject
aircraft's trajectory passes in the vicinity of
this cell

The time associated with the cusp which precedes
entry into the vicinity of this cell

The time associated with the cusp which follows exit
from the vicinity of this cell

("Vicinity” means the cell and its orthogonal and diagonal
neighbors.)




..........
-----------

.....

%

3 BUFFER_TREE:

p + +

N | NoDE_ID | CHILD_ID |

.'{ *

gﬁ This table defines the blocks of the airspace grid in the vicinity
;{ of the flight plan trajectory of the subject aircraft and their
ga relationships to larger blocks in the grid.

NODE_ID Unique identifier of a block of airspace in an x,y,t grid

CHILD ID Unique identifier of a block of airspace in an x,y,t grid
which 18 an octant of that given by NODE_ID

ALLOBJECT_ BLOCKS:

e —

| NODE_ID | occupancy _count

This table defines the blocks of the airspace grid through which any
current flight plan trajectory passes, the number of octants in each
block through which the trajectories pass, and the number of trajec-
tories which pass through each block.

NODE_ID Unique identifier of a block of airspace in an
x,y,t grid

occupancy_count The number of trajectories which pass through this
block

A-3

" . e e
(R U TY e




a2 e . e e e e oW e 2 IO B i P e ST MR A e Yiraiit A N S P e e g R ARSI e NI C A I L A _I—ﬁ"'v'—.'."'"-—s'_fv}"r‘:w:.-:,.w
hd n® e - - - . B - = R - B - o - - . - . " - - . . - - - . -

o ALLOBJECT_TREE:
AN -+ 4
\".‘ v 1 3
) | NODE_ID | CHILD_ID |
-
< This table defines the blocks of the airspace grid through which any
\?: current flight plan trajectory passes and their relationships to
3 larger blocks in the grid.
. NODE ID Unique identifier of a block of airspace in an x,y,t grid
CHILD ID Unique identifier of a block of airspace in an x,y,t grid
v which is an octant of that given by NODE_ID

A-4




s |

A I AP AR A%
e e e N
PRI A ‘ -

X < Lo 2 A 2 L A T R G T T T M S S i I B L P
- a I AL e SR 3 ERATIME A A A i NSO, SN DR LTI DALY R Gl P T TP O

Lo o* A 2 L AL BN Gl T P T e P e I P e 1

g

NOMINEES:
| FL_ID | NODE_ID | subject_entry time | subject exit_time
N + "
MY t
02 | nominee_entry time | nominee exit time |
N3 This table defines the cells for which other flight plan trajec-
" tories may be in conflict with the subject aircraft's trajectory,
ix the times associated with the cusp preceding entry and the cusp
e following exit for each cell for both the subject aircraft's
. trajectory and the nominee aircraft's trajectory.

é
4:.1 )

FL_ID Unique identifier which distinguishes ome
nominee flight plan from all other flight
plans currently defined on the system

NODE _ID Unique identifier of an airspace cell in an
x,y,t grid

subject_entry time The time assocliated with the cusp which
precedes entry into this cell for the
subject aircraft's trajectory

subject_exit time The time associated with the cusp which follows
exit from this cell for the subject
aircraft's trajectory

nominee entry time The time associated with the cusp which
precedes entry into this cell for the
nominee aircraft's trajectory

nominee_exit time The time associated with the cusp which follows
exit from this cell for the nominee
aircraft's trajectory

A-5




;.~ LR A A A M e [N L A -~ R A T P I I e
n(<
0
Qe
o
3 SPARSE_CELLS:
12 + —~ +
| FLIGHT PLAN ID | NODE_ID | min z | max z | entry time | exit_time |
‘.'. L] L]
e This table defines the cells which each flight plan trajectory
.:;_v enters, the range of altitudes the trajectory covers in each cell,
AN and the times associated with the cusp preceding entry and the cusp
following exit for each cell.
Z'-_::: FLIGHT_PLAN_ID Unique identifier which distinguishes one flight
_\j{_ plan from all other flight plans currently defined
AN on the system
NODE_ID Unique identifier of an airspace cell in an x,y,t
Tet Sﬂd
S
30 min z The lowest altitude through which this flight plan
f.-: trajectory passes in this cell
"n\:- '
- max z The highest altitude through which this flight plan
0 trajectory passes in this cell
“-l:
\j: entry_time The time associated with the cusp which precedes
‘_"-!'-. entry into this cell
o) &
) exit time The time associated with the cusp which follows exit
AR .from this cell
heowt
3
3
N
:J;I:
3
e
Ry
U4
<
o
o
n
-:\.!
A A-6
s
[5s
3




SHARED LOCAL VARIABLES

H Cell Dimension

Max lLevel

Real Subject F1 Id

T_Cell Disension

T Offset

Trial Flag

X Offset

Y Offset

Quantization size for cells in horizontal x-y

The level number associated with the leaf level
of the octal trees SPARSE TREE, BUFFER TREE

and ALLOBJECT_TREE

In the case of a trial probe, this variable
contains the flight plan identifier
associated with the subject aircraft's
actual flight plan and Subject F1 Id
containg a dummy flight plan identifier
associated with the trial flight plan

Quantization size for cells in time

A translation in t in the conversion of time to
cell coordinates

A flag indicating whether or not the FPCP was
called for a trial probe

A translation in y in the conversion of
geometric to cell coordinates

A translation in x in the conversion of
geometric to cell coordinates




v - - 7 i R e P R ALV g
a2 Bor Al O e MR A AEAAINARRARA REE A e e LT P R N
e W W e m e W - . P . . R .

.
e la

LY

Te
AR '4-0
P

et
.

i g

LTt 5%
“ .-‘..!.

APPENDIX B

MATHEMATICAL DERIVATION OF FORMULAS

B.l The Time of Violation Formulas

Definitions: D(t) = horizontal separation distance between the :

two aircraft at time t

T = Time_Overlap Min : ‘

Lf: Ps(t) = position vector of subject aircraft at
,2% time t

Bl ok .

Pn(t) = position vector of nominee at time t

Vs = velocity vector of subject aircraft (assumed

'}E to be constant over the length of the segment)
ﬁh vn = velocity vector of nominee (also assumed to
be constant)
Pr(t) = Ps(t) - Pn(t) = relative position
vector at time t )
Vr = Vs - vn = relative velocity vector i
" ” = norm (length) of a vector _
N * = dot product of two vectors v 3
‘ES Analysis: ]

First calculate D(t):

D(t) = [[B(e) - (o)l = [P o)l = (b - pr(c)f’ ]

= {[Pr(” +(t~-T) er . tpr('r) + (c-r') er}”

- {llpt('r) "2 + 2(e-T)P (T)-V_ + (t-1)? IIVIHZ}!5

» h oA A M smsmna s

To calculate the time at which D(t) {s equal to Seph, 1i.e., the
starting and ending times of the violation, set D(t) = Seph or,
equivalently, D2(t) = Seph2 (to produce a quadratic equation) |
and solve for t.

NP OW e — e n e tn A R A




) .
A=vl )
i
. B = 2Pr(T) . Vr :
3 2 :~
c=|le (M| %
[ then the above equation becomes:
Y
X A(t-T)2 + B(t=T) + C - Seph® = 0
g If the discriminant of this equation, B2 - AA(C - Sephz) is less :
. than 0, then the roots are imaginary, implying that the separation
distance is never equal to Seph; consequently no encounter 1is
:_; predicted. If the discriminant is O, there are two real and equal
) roots, meaning that the separation distance is equal to Seph at some
time t*, but is never less than Seph which would be considered a .
S violation of the FPCP horizontal separation standard. Thus, in this P
M case, as in the case above, no encounter 1is predicted. If the 3
- discriminant is greater than 0O, then there are two real and unequal g
i roots which provide the starting and ending times of a violation. "
These times are obtained by way of the quadratic formula.
‘ 2 2..%
7. Time_Viol Start = 3 - (3 %{c Seph )) +T
5 2%
'. - - -
Time Viol End = —2-tLE - 4A(C - Seph )] , ,
Sl .
3 B.2 The Minimum Separation Formulas :
R Definitions: Same as those above o
Analysis: First calculate D(t) as above, obtaining .
3 2 2 2% '
X D(t) = {IIP,ﬂ')ll + 2(e-T)P (T) * V_ + (e=T)" ||V || } o
' X ;
- { A1) + B(t-T) + c} 4
& ;
S »
‘ -
L™ .
X = -
L B-2 -
-
N .
f
:; -
. ~,v' ‘- \ - .. "J-.'.h"{".f" .4]\ RS ~.‘~-_ ",-",-:'.'.'. .. _:.._*.'_3 ,'-. . '.:'.':'.':'.-“."'.'-'.-A',-" '.'_:"_:. . . R _:.-_'.‘_:. .'-._‘-u_: ...... . < .{_:.\;‘




o o - o — ————y—y i dte s Janc Rt St B s o Tl Ao ST T BTV T Al S S
el Sl B e pediaaib raniral atS e LN NN RS R MR e i R e R e - R E
o

e

O\

RS

" where

-.‘::

2

| A=l

)
N - .

) B ZPr(T) Vr

2,
¢ =liz ]l %

: To find the time t* when this function 18 a minimum (t* = Time_
Msep), one needs to differentiate D(t), set the result equal to O,
N and solve for t.

dn(e) 2A(t-T) + B .
de 2CA(t-T)2 + B(t-T) +Cl1*

implying that

0

2A(t-T) + B =0

ot and, consequently, that
X .
N t = t* = Time Msep = 5 + T

\ 2A

Substituting into D(t) to obtain the minimum separation distance,
one gets

Msep Dist = D(t*) = [A(t* - T)2 +B(t* - T) + CI%

R At 8 _a e
KU &

NERL R - SISy aF 3 W SCRV] §- & RN

.......




P
QDI

L
[ TN NN

] ()
DA | i

l-l Py -‘.'t..‘
AR R R R "

l

R

LAt it e S T R ?"?T

APPENDIX C

TREE TRAVERSAL TECHNIQUES USED BY THE COARSE FILIER
AND MAINT

C.1 Recursion

Data structures in the form of trees lead naturally to
algorithms using recursion--that is, algorithms that call
themselves as subroutines. Typlcally, a recursive algorithm
must do some processing at each node of a tree. Some of this
processing, which may be denoted Ppgporgs may be required
before any of the node's children are processed, while other
processing, say P,prgpr, may be required only after all chil-
dren have been processed. Other processing at the node may be
required on a per-child basis; however, the bulk of this,
especially that involving grandchildren and more remote descen-
dants, i1is similar to P and P one level down,
with each child in turn taffﬁnghe role grg‘ge parent.

A recursive algorithm generally looks only at a single node and
its immediate children at any one time. In this volume, all
trees have the property that all leaves are at the same level.
An algorithm can then determine whether a node is a leaf by
knowing its level. When a leaf is reached, there are no more
children, and different processing, say Pypap, 1s performed.
A typical recursive algorithm, which we denote Treesearch, 1is
called via a statement such as CALL Treesearch (ROOT IN, 0 IN),
while the procedure Treesearch looks like this:

ROUTINE Treesearch (Node IN, Level IN);
IF Level EQ Leaf Level
THEN

~ CALL Ppppopg;
REPEAT FOR EACH Child;
CALL Treesearch (Child IN, Level + 1 IN);

CALL PoprERS
END Treesearch;

Preorder and Postorder

It 18 sometimes useful to assign an ordering to a tree's
nodes. Consider an ant which starts at the root and crawls
along the branches, always taking the leftmost unvisited
branch, doubling back at the leaves, so that each bramch is
eventually traversed exactly once ending at the root, as shown

c-1




P T

e,
3
f-

. (a) Path of the ant around the tree

(b) Preorder. The ant assigns the labels as it visits the nodes

10

(c) Postorder. The ant withholds the parent's label until
all its children are labeled

FIGURE C-1
ORDERINGS OF NODES ON A TREE

Cc-2

T e

.
e - R
SN - F




K- S (g s i S i il et anth et it RARY

.
g
e
b
A
’ in Figure C-la. If the ant counts (and labels) each node as it
Lo is first visited, the labels will appear as in Figure C-1b.
,':4 Note that the root of each subtree has a lower label than any
'-.: of 1its descendants. This ordering is called a preorder.
_::q Treesearch can be used as a template to generate a preordering
1o of a tree: and Prpap consist simply of labeling
the current node wgnﬁ the next ava:llable number, starting with
b “1" at the root. Paprpr 18 null. Specifically, using a
&N global variable NUMBER initialized to "1 and an initial call
S such a8 CALL Preorder (ROOT IN, O IN), the algorithm 1is as
- follows:
A
| | ROUTINE Preorder (Node IN, LEVEL IN);
X Assign Number to Node;
N Number = Number + 1;
4 IF Level LT Leaf Level
S, THEN
ye ~ REPEAT FOR EACH Child;
CALL Preorder (Child IN, Level + 1 IN);
- END Preorder;
-t.,, Another useful ordering of a tree's nodes is the storder,
;:: which resembles the preorder except that a node's )IEI is
o, withheld (by the ant) until all its children have received
" labels (Figure C-lc). Treesearch generates a postordering if
N the roles of Pypppopg and Paprgr ("label” and "do nothing™)
-.; are reversed:
X ROUTINE Postorder (Node i_N, Level IN);
e IF Level LT Leaf Level
THEN
N REPEAT FOR EACH Child;
O CALL Postorder (child IN, Level + 1 IN);
yo) Assign Number to Node;
- Number = Number + 1;
= END Postorder;
W ) C.2 Insertion To and Deletion From the ALLOBJECT Tree Using b
e Treesearch 1
o - ]
o

“a

Treesearch can also be used as a template for imserting or
deleting the cells of a grid chain (sparse or buffer) from the
set of cells represented in the Allobject Tree. For an insert,
the Allobject node corresponding to each subject node must be
updated (to reflect one extra aircraft). Of course, 1f the

&
4

aat

A5

1

\ Allobject Tree node does not exist, it must first be created, ]

b and created before any of its children can be added to the q

’f‘ object tree. The insertion must be accomplished in preorder; i

o c-3 1
!
A
4

WO

ABNSEIREIR Y S

-*w-‘- - . T e RS S
N » ~ - AR .. Y LT Y.

........



AERENIRENE
+
Lo~

Pl SlL

G e e e -9t it A6 NI A St S S S ST s e Mt - St Toie- e 2t At (et hon el ot de o A - i YTV

LI AN A D T ) R 2 T e I e St T A R St e Y-

the node's creation belongs to Ppgporg: For a delete, the
Allobject node corresponding to each subject node must be
updated (to reflect one fewer aircraft). If the count is
thereby reduced to zero, the Allobject node must be
deleted—but any of 1its children must be deleted first
(otherwise they would become inaccessible). The deletion must
be accomplished iu postorder; the node's deletion belongs to
Paorrere In an 1insert or delete, a leaf node may be treated
like any other node, except that its childrem are not checked.

C.3 Coarse Filter Using Treesearch

Treesearch can serve as a template for the coarse filter
itself. The search proceeds (in preorder) only along nodes
found in both the subject and the Allobject Tree (nmo conflict
can occur for a node unless both subject and object occupy the
corresponding grid block). Thus, Pppporg consists of
eliminating from further consideration any of a node's chlldrem
not found in both trees. P consists of adding the object
to the table of nominees (after an altitude screening).
Pm is null:

ROUTINE Coarse Filter (Node IN, Level IN);
IF level LT Leaf Level
THEN |
REPEAT FOR EACH of the eight possible children;
IF 1ld exists in both trees

CALL Coarse Filter (Child IN, Level + 1 IN);
ELSE - -
IF Altitude conditions met
THEN Add each object occupying this cell (corresponding
to Node) to a table of nominees;
END Coarse Filter;

Section 4.2 describes the details of an algorithm named Nominee
Detection which is called by the Coarse Filter to perform this
process.

I & KRR

'Zl‘ Wy e Wt N
. PRSP R

a2
4

TN

)

i
i




b
-

>
-\.
-
.

o‘..b"“.' %

+
=
L]

P

[/
SR

)
.':.‘t’
aa &

aps

P
-*.':').'_' )

APPENDIX D

GLOSSARY

Number 1in parentheses at the end of the definition refers to the
section in which the term is first used.

AAS

Advisory
message

Advisory
separation
criteria

Advisory Seph

Advisory Sept

Advisory time
of violation

Alr traffic
controller

Alrspace grid

Allobject Tree

Altitude
restriction

Ancestor (of
a tree node)

Advanced Automation System (1.1)

Message displayed to the controller for conflicts
not necessarily requiring prompt resolution; may
be in the form of text and/or a graphic display
(2.1.11) _

The criteria used by the Fine Filter in the
horizontal and time dimensions to declare an
advisory conflict (2.1.11)

The horizontal distance used by FPCP for declaring
an advisory conflict between two aircraft (2.1.11)

The time in advance of the advisory time of
violation that 18 allowed to the controller to
resolve the conflict (2.1.11)

The initial time at which the distance between two
aircraft trajectories falls below the advisory
SEPH (2.1.11)

Automated En Route Air Traffic Control (1.4.1.1)
Same as “"Controller” (1.4.1)

Grid dividing the horizontal dimensions of the
planning region over time 1into discrete cells
(2.1.6) '

A tree which is the union of all individual object
trees (2.1.8)

A directive from a controller to a pilot to be at,
at or above, or at or below a given altitude by a
given point along the flight path (1.4.1)

Either a parent of the node, or a parent of an an-
cestor of the node (2.1,8)

D-1

et e
ORI SR ST
PN PR > y

"




4 f
RN E

N

Area supervigor

ARTCC

ATC

Block

Buffer grid
chain

Buffer
Subject Tree

Cell

Child (of a
tree node)

Coarse Filter

-

T N AT AT T T

Second level division (see "Center,” "Sector”) of
the Continental United States airspace. Con-
trollers are specially trained for an area's
airspace, a region bounded horizontally by a
polygon and stretching vertically up to 60,000
feet (1.4.1)

The first-line supervisor of an area (1.4.1)

Air Route Traffic Control Center (see "Center")
(1.4.1)

Alr Traffic Control (1.1)

A subset of the (x,y,t) airspace grid associated
with one tree node (2.1.8)

The sparse grid chain plus all the cells which:
share at least one vertex with a cell in the
sparse grid chain (2.1.7)

The tree formed from the subject's buffer grid
chain (2.1.8)

Individual parallelepipeds in (x,y,t) space
within the airspace grid (2.1.6)

Administrative  headquarters and operational
facility for control of a first level division
(see "Area,” "Sector”) of the Continental United
States airspace (there are currently 20 centers);
controls a region bounded horizontally by a
polygon and stretching vertically from the center
floor to 60,000 feet (1.4.1)

A node sharing an edge with the given node and
having a higher level than the given node (2.1.8)

An algorithm that compares the Buffer Subject
Tree to the Allobject Tree, eliminating from
further consideration those objects which do not
share occupancy of at least one cell with the
subject (2.1.9)

Third level algorithmic unit in breakdown of AERA
(see "Function,” “"Subfunction,” "Element”) (1.3)




el At e P A R B S S
» - . = . - - . - .~

Conflict Displayed violation of the FPCP advisory separa-
tion criteria by one aircraft's trajectory with

X respect to another aircraft's trajectory (1.5.1)
‘-!
f\f Controller In this document, an en route radar controller as

iy defined in "Glossary of Common Terms in Air

Traffic Control Operations”™ [13] (1.4.1)

::Z : Cusp A regular cusp or a maneuver envelope cusp; a

. point in (x,y,z,t) space (2.1.4)

o
'y Delta horizon Interval at which horizon updates are 1invoked

(2.1.2)

N Descendant (of Either a child of the node, or a child of a des-

4 a tree node) cendant of the node (2.i.8)

.

)

ot Display- The time at which an advisory message 18 first

as-advisory displayed to the controller (2.1.11)

o time
e

> Display- The time at which a priority message 1is first
3 as~-priority displayed to the controller (2.1.11)

2 DP Density Probe (1.4.2.2)

-
;‘_- Element Fourth level algorithmic unit in breakdown of ]
" AERA (see "Function,” "Subfunction,” "Component”) .
L~ (1.3)

N ELOD Enroute Sector Loading (1.4.1.2.1)

<

) Encounter Violation of the FPCP separation .riteria found

! by the Fine Filter between the trajectories of

! the subject and a nominee (may be too far in the
" future to display as a conflict) (2.1.10) '
- X
- Encounter Nominee aircraft whose trajectory is in violation ~
2 aircraft of the FPCP separation criteria relative to the J
3 : subject's trajectory according to the Fine Filter h
(201010) i
A\ FAA Federal Aviation Administration (1.1) 3
-~ 8
N Fine Filter An algorithm that tests subject-nominee segment ;:
>, pairs againast FPCP separation criteria using N
24 rigorous mathematical analyses (2.1.10) i
& p-3 R
3 o
-:: '

1

.............




Flight plan

FPCP

FPCP advisory
separation
criteria

FPCP horizon
update

FPCP priority
separation
criteria

FPCP trajectory
update

Function

GCG
Grid cell
Grid chain

Hold

Holding pattern’

Holding pattern
cusp

Holding pattern
segment

Horizon update

Pilot's intended route to reach his destination
as cleared by the air traffic control system

(1.4.1)

Flight Plan Conflict Probe (1.1)

Same as "Advisory separation criteria” (2.1.11)

Same as "horizon update” (2.1.2)

Same as "Priority separation criteria” (2.1.11)

Same as "trajectory update” (2.1.3)

A major building block of AERA--a principal
algorithm which is the top level unit in the
breakdown of AERA (see "Subfunction,”
"Component ,” "Element”) (1.1)

Grid Chain Generator (3.3.1)

Same as "Cell" (2.1.6)

List of an aircraft's occupied cells (2.1.7)
Same as "Holding pattern” (2.1.5)

An aircraft maneuver to delay its en route
progress; usually a circling or spiraling within
a specified airspace (2.1.5)

The entry or exit point of the holding pattern
expressed in spatial and temporal coordinates
(2.1.5)

Portion of the trajectory containing a holding
pattern and defined by a pair of holding pattern
cusps (2.1.5)

A periodic updating of the time horizon which
causes an invocation of FPCP (2.1.2)

D-4




...............

ID : Identification (1.5.1)
Independent The variable (x, y, or t) in which a trajectory
Variable segment changes most rapidly (4.1.1.3)

leaf (of a tree) A node with no children (2.1.8)

. Level (of a Nonnegative integer assigned to the node (number
LSS tree node) of edges on path to root)

:.:: Maneuver The geometric structure which encloses an air-
f—_f | envelope space-sweeping maneuver (2.1.5)

. Maneuver The entry or exit point of the maneuver envelope
fi:-“! envelope cusp expressed in spatial and temporal coordinates
%3 (2.1.5)

W)
j ; Maneuver Portion of the trajectory containing a maneuver

" envelope segment envelope and defined by a pair of maneuver
2 envelope cusps (2.1.5)

E: NAS National Airspace System (1.1)
[y '.::
] 3 NASP National Airspace System Plan (1.4.1)

- Node Same as “tree node” (2.1.8)

"-- Nominee An aircraft which was not eliminated from further

SN consideration by the Coarse Filter and therefore

AN will have its trajectory examined by the Fine
Filter (2.1.9)

X

. Nominee Same as "Nominee™ (2.1.9)

o aircraft ‘

AN

;C: Object An aircraft (which is not. the subject) whose

" current trajectory has already been processed by

M e ) mP (105.2)

)

e Occupied cell Cell selected by one of two mathematical formulas
' to be in the grid chain for a trajectory; there

_‘;Z-“ are sparse and buffer criteria for determining
—_— occupancy (2.1.7)

A Occupied block A block containing an occupied cell (2.1.8)
=t

2 o=

&

»

!
[
MK

...................
.................




S,

o
PV Rary

N L4
~

L DOLE
b e

A 0 48
N

ROV AT

R -
o’ B KL P

Lk .

{ \-‘:'_;..AJ..!

Tt N

LK 5% N

*

AL L AT

2741
-

-

A% v

Aol ' P
Al

...................

Octant (of a
block)

Parent (of a
tree node)

PDL

Planning region

Postorder

Preoxrder

Priority message

Priority

separation
criteria

Priority Seph

Priority Sept

Priority time of
violation

Regular cusp

Regular segment

Resynchroni-
zation

...........

One of eight blocks obtained by dividing the
given block in half along each of the x, y, and t
axes (2.1.8)

A node sharing an edge with the given node and
having a lower level than the given node (2.1.8)

Program design language (1.2)

A center's airspace. plus a buffer zone around it
for handoffs between centers (1.5.2)

Ordering of tree nodes by labelling child nodes
before their parent node (3.3.2.1.1)

Ordering of tree nodes by labeiling a parent node
before its child nodes (3.3.2.1.1)

Message displayed to the controller when two

trajectories are in violation of FPCP priority
separation criteria (2.1.11)

The criteria used by the Fine Filter in the
horizontal and time dimensions to declare a
priority conflict (2.1.11)

The horizontal distance wused by FPCP for
declaring a priority conflict between two
aircraft (2.1.11) '

The time in advance of the priority time of
violation that 1is allowed to the controller to
resolve the conflict (2.1.11)

The initial time at which the distance between
two aircraft trajectories falls below the
priority SEPH (1.5.2)

One of the endpoints of a segment expressed in
spatial and temporal coordinates (2.1.5)

Portion of the trajectofy delimited by a pair of
(x,y,2,t) coordinates called cusps and
approximated by a straight line (2.1.5)

Recomputaviorn of the estimated aircraft trajec-
tory when the trajectory is inconsistent with the
aircraft's recent radar track history (2.1.1)

D-6

.................

PRI~ & TSR <4 S

X
X
4



e
'

& I

S

-4

-

FA N

A ';'Jgtlnt‘i

o

SN

P

) Ao NN

R

e

el | A

i

N
%)

Root (of a tree)

Sector
Segment
Segment chain
Sparse grid
chain

Sparse Subject
Tree

Subblock (of a
block)
Subfunction
Subject

SWP

TCAS

Time horizom
Trajectory

}he (u?ique) node with level zero (and no parent)
2.1.8

Third level division (see “Center,” "Area”) of
the Continental United States airspace to which a
controller is assigned; a region bounded horizon-
tally by a polygon and stretching vertically from
a floor (the ground or a specified altitude) to a
ceiling altitude (1.4.1)

A regular segment or maneuver envelope segment
(2.1.4)

Sequence of segments modelling a trajectory
through the planning region (2.1.4)" '

The grid chain consisting of cells selected as
occupied using the sparse criterion (2.1.7)

A tree generated from an subject's sparse grid
chain; it 1is used for subsequent maintenance

operations on the Allobject Tree (2.1.8)

Same as "octant” (2.1.8)

Second level unit in the breakdown of AERA (see
"Function,” “Component,” "Element”) (1.3)

The aircraft whose new, updated, revised, or
alternative (trial probe) trajectory is currently
being tested by FPCP (1.5.2)

Sector Workload Probe (2.2.7)

Traffic Alert and Collision Avoidance System
(1.4.1.2.3)

Time bound on FPCP consideration of future
trajectory information (2.1.2)

Description of an aircraft's position in
(x,y,z,t) space, produced by applying altitude
and timing assumptions to the filed flight plan
and revised when necessary (1.4.1.1)

D-7

TR

LA




2

»
L)

AR

Ay

e "‘_.".‘ .

Pa's

..
1 ]
JULALD

>3,

[t
.l

A,

Ll 4

s & e

A D

L A
=%

AN

AR RN
L 2

<.

A S e T R B e e

Trajectory
update

Tree

Tree node

Trial probe

Vector

Vertical
saneuver
envelope

Vertex

One of three events: 1) a trajectory is added,
2) a trajectory is resynchronized, or 3) a
trajectory is amended (2.1.3)

A graph (set of (tree) nodes connected by edges)
with certain properties. Each node is assigned a
level (integer); each edge connects nodes whose
levels differ by 1; a single node has level 0; no
node has edges to more than one lower-level node
(2.1.8) M

(also called node) An endpoint of an edge in a
tree (2.1.8)

A test usinngPCP on a flight plan proposed as an
alternative to one which already exists (1.5.1)

Controller-directed maneuver to provide an
aircraft with a change in route (2.1.5)

A set of four points (vertices) associated with a
cugp that defines the vertical protection
provided around an aircraft (2.2.4)

One of the four points in (x,y,z,t) space
defining a vertical maneuver envelope (2.2.4)

.
0

- . - v
. .

A




APPENDIX E

AERA PDL LANGUAGE REFERENCE SUMMARY

E.1 Overview of the Use of AERA PDL

The AERA Program Design language (PDL) has been created for the

R single purpose of presenting algorithms in this specification
oy . document. It evolves from previous AERA uses, and from MITRE'
N WP-81W552, “All About E," October 1981.

t

K The description of this appendix 1is intended to support readers and

users of AERA PDL. AERA PDL supports readable, yet structured and
R consistent, descriptions of algorithms. A
':2 AFRA PDL Features
~h
Ly
e o Relational data tables can be defined and manipulated by
constructs in the language.
? -.j o Builtin functions are used to provide routine calculations
Tag without showing all of the detail.
o Routines are used to modularize logic paths and data scope.

N e Indentation 18 wused to indicate statement grouping,
-3 statement continuation, and levels of nesting.

-

%od
! :; o Routines explicitly define data or refer to predefined data.
vy :

AERA PDL Statements

The types of statements used in AEFRA PDL are:

English language statements
assignment statements

routine declaration statements
data manipulation statements
flow of control statements

.i.\, g ey e ot tew
X NN HACK

7
eecse o

E.2 Elements of AFRA PDL

g, o

ir s s 2L

Keywords

Keywords are words reserved for the usage of AERA PDL. Figure

E-1 presents all the keywords used in the current version of
AFRA PDL, grouped for convenience.

¥y oe
.». - A a 8

i

E-1

A

e ¢
o

N T




» W
IO
Gete S AN Y

2

A

P Al
3 e
A Sl

222

~

CaCa)
&

> - RAOX.
-

'f..,"fsu, '\-n. o, ‘ '." -"'

routine construction keywords

CALL END ROUTINE

data reference keywords

PARAMETERS IN
REFER_TO GLOBAL 00T

REFER TO SHARED LOCAL INOUT
DEFINED IN GLOSSARY

data definition keywords

DEFINE CONSTANT(S)
DEFINE VARIABLE(S)
DEFINE TABLE(S)

common arithmetic builtin function keywords

AVG MIN  ABS  EXP  COS  ARCCOS

SIM MAX CEIL 1LOG SIN  ARCSIN

PROD  MEDIAN FLOOR SQRT TAN  ARCTAN
STGNUM

MD

coordinate geometry builtin function keywords

DIST DOT INTERSECTION
MAGNITUDE CROSS INTERPQLATE
DI ION LINE
set builtin function keywords
UNIQUE COUNT CONCAT BOOL
FIGURE E-1

. KEYWORD GROUPINGS

E-2

.....

..............

v .

------




* o4

, "s\.';‘ﬂ"“"

,.I
YO
T AR

8.7 1t
»
PO

ol

; Q!ﬁ?ﬁsggz

'fn_‘ N "

-

e

.........

set operator keywords

UNION  INTERSECT

table manipulation keywords

SELECT FIELDS ALL
INSERT INTO FROM
DELETE FROM INTO
UPDATE IN WHERE
ORDERED BY
RETURN COUNT
value constant keywords
TRUE FALSE NULL
comparison keywords
NoT  or " ANY
[ 3 AL
AND LT IS IN
I IS NOT_IN

flow of control keywords

IF ... THEN ... ELSE
CHOOSE CASE ... WHEN ... THEN ... OTHERWISE

REPEAT WHILE
REPEAT FOR FACH ... RECORD
G ™0 -

FIGURE E-1 (Concluded)
KEYWORD GROUPINGS

E-3




bt ' Operators
X The operators of AERA PDL are summarized in Figure E-2.
>
& The Assignment Operator
923
. £ o The format of the assignment statement is:
"target” = “expression”
‘ e The target may be any type of data allowed by AERA PDL.
'."\
o The assignment operator includes the ability to fill a table
‘ from data contained in other tables. The form of this use
of the assignment operator is:
v “table_name” = “table expression” ;
X
}: Builtin Functions
W The builtin functions of AERA PDL accept either an single value

or data organized into an array. The author of a routine must
¥ make it clear in comments and text what form of data 1s being
L){ processed by the builtin function. Builtin functions are
. listed in Figure E-3.

A E.3 Routine Construction

The order of appearance of constructs in a routine is:

, e ROUTINE -—- required
,,‘ e PARAMETERS — optional
e REFER TO GLOBAL -- optional
e REFER TO SHARED LOCAL — optional

A o DEFINED IN GIOSSARY — optional

; o DEFINE CONSTANTS —— optional

Py o DEFINE VARIABLES -—— optional

3_ o DEFINE TABLES — optional
o e logic flow — required, but will vary by routine.

e  END — required
:’,3 Three of the constructs are noted below:
'

3 The ROUTINE Construct

" e The ROUTINE construct names the routine.
N e The syntax of the ROUTINE construct is:
'ﬁ‘, ROUTINE "routine name” ;

(oA

;‘

# E-4

bt

A

N :’

.....




FTEE IR vy

assignment operator

A=B A is assigned the value of B

arithmetic operators

A+B A plus B

A-B A minus B

A*B A times B

A/B A divided by B

A #*% B A to the power of B

comparison operators

ALTB A 18 less than B

ALEB A 18 less than or equal to B
AGT B A 18 greater than B

A EB A is greater than or equal to B
AEQB A 18 equal to B

A NE B

A 18 not equal to B
logical operators |

NOT A The logical opposite of A
AORB ngicalgn_oanndB
A AND B Logical AND of A and B

set operators

A INTERSECT B The set intersection of A and B

A UNION B The set union of A and B

AJISINB A is an element. of the set B

A IS NOT IN B A is not an element of the set B
FIGURE E-2

GROUPINGS OF AERA PDL OPERATORS

..................

''''''''''''
----------------
................



Pl B

20

g APl | 5" e

p o s 2 M

W i

WA

P A

FUNCTION MEANING
ABS(x) Absolute v.alue of x
ARCCOS (x,y) Inverse cosine of the ratio of y to x
ARCSIN(x,y) Inverse sine of the ratio of y to x
ARCTAN(x,y) Inverse tangent of the ratio of y to x
AVG(A) Mean of the elements in A
M(x) Numerical equivalent of logical conditiom:
1 1f x is TRUE, O 1f x 1s FALSE
_glg(x) Smallest integer greater than or equal to x
CONCAT(s1,82,...,8N) Concatenation of strings sl through' 8N
€08 (x) Cosine of x
COUNT(A) Number of elements of a set A
- CROSS(v1,v2) Cross product of vectors vl and v2
DIRECTION(pl,p2) Direction of p2 from pl in degrees from the
north; usually will be expressed in degrees
clockwise from true north
DIST(pl,p2) Euclidean distance between points pl and p2
DOr(v1,v2) Dot product of vectors vl and v2
EXP(x) e to the x power
FIOOR(x) Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS

E-6

PR - A AR

A




FUNCTION MEANING

INTERPOLATE(a,b, t) The point (1-t)a+tb

INTERSECTION(L1,12) The point of intersection of the lines Ll and

LINE(pl,p2) %thor (a,b,c) corresponding to the 1lime
ax + by = ¢ which passes through the points
pl and p2

LoG(x) log of x in base e

MAGNITUDE(v) Length (i.e., norm) of the veci:or v

MAX(A) largest of the elements in the set A

MEDIAN(A) Median value of the elements in set A

MIN(A) Smallest of the values in set A

MON(x1,x2) Remainder when x1 is divided by x2

PROD(A) Product of the elements im A

SIGNUM(x) Function yielding 1 if x GT 0, -1 1if x LT 0,
and 0 1f x EQ 0 -

SIN(x) Sine of x

SQRT(x) Square root of x

SUM(A) Sum of the elements in A

TAN(x) Tangent of x

UNIQUE(A) The set A with no duplicate elements

FIGURE E-3 (Concluded)
BUILTIN FUNCTIONS

E-7

A A L AL PR PR TR




Py e R > DR T AT T T T T
i
A
s
AV
RO
N The CALL Construct
QCIN e The CALL construct invokes use of another routine as a
30N subroutine and passes to it the data on which it is to
‘«.j\ operate.
i
.‘:'\' o The syntax of the CALL construct is:
CALL routine_name ( "data_usage list” ) ;
::::: o The data usage list in the CALL statement must match in
£ number and data utilization (IN » OUT, INOUY) the PARAMETERS
.'4\': stateme-.t of the called routine.
gl
) The END Construct
o8, .
,-;:-3; e The END construct shows the formal end of the routine.
I‘\‘J
)::' e The syntax of the END comstruct is:
e - END “"routine name" ;
E.4 Data Definitions
LAY
% Data usage is defined in the comstructs placed at the beginning of

“
:-_ each routine,

The structures, or organization of data, recognizable to AERA PDL

4_. include cconstants, atomic variables, hierarchically structured

A variables, arrays, tables, and field-types. The hierarchically

:2: structured variables are the same as the structure variables of PL/I.

S\

":‘-:' Within a table, the values corresponding to the definition of a
\ field-type are called fields when they are referred to individ-

25 ually. The values for a whole column of a table (or a subset of the
o whole column) may be referred to as a set of fields.

J‘\J
d

:f;., The following data definition constructs appear in the order shownm,

MY if any are needed. The first line of each construct begins in
~ column 1, aligned with the ROUTINE comstruct. .

- The PARAMETERS Construct

'_-l::':: e This construct provides usage information about the data

‘ that are being provided by the calling routine in the form
, of specification of read-only 'IN' write-only 'OUT', or

P modification of an existing value INOUT'

:::!'::

£

- E-8

'n’&'u

~',%

2o

.,'; .




...........

- e Variables appearing in the PARAMETFRS construct are still
local data for the routine belng defined and as such appear

N

',bj in the definition constructs.

A"
‘-‘ e The syntax of the PARAMETERS construct is: N
2 PARAMETERS "data usage list™ ;
L TARAMETERS | :

. The REFER TO GLOBAL Construct
N

S e This construct provides reference to, and usage information
j for, data from the Global data model.

sd

: e The syntax of the REFER TO GLOBAL comstruct is:

o REFER TO GLOBAL "data_usage list” ;

The REFER TO SHARED LOCAL Construct

wt &
P O

e This construct provides reference to, and usage information
for, data from the Shared Local data model described in
Appendix A of the specification.

24 e The syntax of the shared local conmstruct is:
h REFER TO SHARED LOCAL "data usage list" ;

-
o By- 4,

The DEFINED IN GLOSSARY Construct

: e This construct provides reference to, and usage information

- for, data from a specially prepared Glossary that central-

. izes the definition of data variables that are used re-

3 peatedly within a given function of the algorithmic

specification.,

- e The syntax of the shared local construct is: .

$ DEFINED IN GLOSSARY “"data_usage list™ ; 5

-" ‘..

> The DEFINE CONSTANTS Comstruct 3

N . ¢ The use of named constants instead of in-line numerical !

2 constants is available at the discretion of the author of an g

‘_ algoritha. Named constants, if present, are to be declared -

N with this comstruct. 2

2 B

b e The syntax of the DEFINE CONSTANTS comstruct is: n
DEFINE CONSTANTS 'constant_definition block” ; -

%

o

-z




~ e - T —w wve B as B b b Bt s
e A 0 I e A s Al i MRS IS A Jd S A A e R i A N £ DDA SO A oA J R A A, Ry AP AR SR

AL I

The DEFINE VARIABLES Construct

e The syntax of the DEFINE VARIABLES construct is: ‘
DEFINE VARIABLES “variable definition_block”

The DEFINE TABLES Construct

e The syntax of the DEFINE VARIABLES construct is:
DEFINE TABLES 'taSIe_aefIEItIon;plock“;

Flow of Control Constructs

The IF...THEN...ELSE Construct

MR nf .l o' 2 W 4 0 _EENRD

e The syntax of the IF...THEN...ELSE construct is:
IF “"condition” '
~ . THEN
"statement_block”
[ ELSE

'statenenq_block” ]

Adia.

The CHOOSE CASE Construct

o This construct provides a choice of one of several alterna-
tive logic paths depending on the first condition satisfied
among the conditions specified.

e The OTHERWISE phrase is optional.

e The syntax of the CHOOSE CASE construct is:
CHOOSE CASE
~ WHEN "condition” THEN
"statement_block™
[ WHEN phrases repeated as necessary )
[ OTHERWISE

'atatement_plock" ]

The REPEAT WHILE Construct

o The syntax of the REPEAT WHILE comstruct is:
REPEAT WHILE "condition” ;
“statement_block"”

The REPEAT UNTIL construct

o The syntax of the REPEAT UNTIL construct is:
REPEAT UNTIL “"condition” ;
“statement_block”

E-10



N

-
i-:
/ \.

.
N The REPEAT FOR EACH RECORD Construct

_ e This construct explicitly loops over all records in table,
_“' or the subset of a table as specified in a WHERE phrase.

*,: e The syntax of the REPEAT FOR EACH construct is:
%o REPEAT FOR FACH "table name™ RECORD

. [ WHERE “"condition™ ]~ ;

'atatenent_block"

o 7 e Within the statement block of this loop, the comstruct of
ey "table name”."field name” means only the ONE value that is
LN associated with the record for that iteration of the loop.
‘ e If it is necessary to refer to entire columns of the table
-.‘ that is being looped on, the correct form of the reference
e is ALL("table_name”."field name”). This construct means
N exactly what “table name"."field name” would have meant 1f
Y the loop had not been in effect.
e The GO TO Comstruct

*

_:;: e The syntax of the GO TO coamstruct is:
0] GO TO "label” ;

ot

The FOR...TO... Construct

',‘E,._ ‘ ¢ The syntax of the FOR...T0... construct is:

0o FOR "loop index” = "initial value” TO “last value” ;

<, ‘ A—— - -— — -
b "statement_block"

o

i E.6 Table Manipulation Constructs
VJZ;: The SELECT FIELDS Comstruct

&)
'P: e This construct extracts data from a table, or from a collec~
¥ ) tion of tables, and makes it available to the routine.
ap—

» . e The syntax of the SELECT FIELDS construct is:

N SELECT FIELDS [ UNIQUE ] [ "field list” | ALL]

T OM "table name list”

AN [ INTO "local variable name list™ ]
o [ WHERE "condition” ]
- [ ORDERED BY "field name” ]

< [ RETURN COUNT ( “"local variable™ ) ] ;

Y I -

.

YN

’
-

..... T S
ST v el v IRV
PRI I Gt o 4V WOl ¥ o8 Wil G W WA Ty Wow




E.7

The INSERT INTO Construct

o This construct allows a new record to be inserted into a
table,

e The syntax of the INSERT INTO construct is:
INSERT INTO “"table name” Z"f:leld_assignments")
[ WHERE "condition”] ;

e All insertions will preserve the assumption of no duplicate
records allowed in the table.

The UPDATE IN Construct

e This construct allows existing records in a table to have
certain of their values changed.

e The syntax of the UPDATE IN comstruct is:
UPDATE IN "table name" E"field_asaignments")
[ WHERE "condition” ] ;

The DELETE FROM Construct

e This construct removes selected records from a table.

e The syntax of the DELETE FROM construct is:
DELETE FROM "taBle__name"
[ WHERE "condition” ] ;

Glossary

“comparison”

o There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as if
they shared the same element of the language.

e The first syntax is for arithmetic comparisons:
“individual® GE|LE|GT|LT “"individual”

e The second syntax is for general comparisons:
"individual™ EQ|NE "individual®”

e Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organizationm,
for example two vectors of the same length or two field
types from the same table. In this case the result has as
many answers as there are elements in the compared variables.

E~12




e The third syntax is for arithmetic comparisons:
“individual™ GE|LE|GTILT ANYIALL “set”

e The fourth syntax is for general comparisons:
"individual® IS IN|IS NOT IN “set”

e The latter two syntaxes are used to qualify an individual
based on any value in a set of values.

AR »condition”

LN
o e The syntax of the condition is:
N “comparison” [ANDIAND NOT|ORIOR NOT “comparison”)
Hh4 e The optional part of this syntax can be repeated as often as
ot e required.
'ﬁ‘-:::
% :Z;; “constant definition block”
‘j, e The content of the constant definition block i1s three
;‘-,~. columns: the constant names, the constant values, and the
g.‘;j- constant descriptions.
.-3'. e The constant names are aligned in a column 3 spaces indented
7" from the DEFINE CONSTANTS line.
- o The other two columns are aligned as convenient, so that
T there is no visual overlap between the columms.
“&'
N "data usage 1list”
o
: e A routine must declare the type of use for all of ita data
_ that are known outside the routine.
Y
1':1 e The three types of use are: read only (IN), create (OUT),
:j and modify an existing copy (INOUT).
N
Nl . e The format of a data usage list is:
N “variable name" “usage type", ...
BLgA
AN ® An example of the format for data usage list 1s:
- Ao Input_Parameter IN, A LOCAL TABLE INOUT
- “expression”
Lol
""; e Variables may be formed implicitly in expressions without
“z being separately named or defined.
- E-13
L3
~
0N




BN
o
R
2, o Expressions are combinations of defined variables with the
operators and builting functions of AERA PDL.
N ¢ In an expression, the implicit variable output from any
- builtin function may be used as the input to any other
y builtin function or operator.
® An expression, when fully evaluated, yields one variable.
ry
. "field assignments”
g o This term only appears in statements referring to exactly
3 one table: INSERT and UPDATE.
X e The form of the term is a comma-separated list:
X "field assignment”, ...
J‘
4. e The form of a single assignment is:
4 "field name" = "value_ expression”
3 o In this term the field names do not have to be qualified by
;J the table name (that is given in the statement).
@ "table definition block”
o Three types of definition are made in this block: table defi-
nitions, field-type definitions, and AGGREGATE definitioms.
]
j e Table definition lines are formatted as:
~ “table name” “table definition"”
e Field-type definitions lines are formatted as:
3 “field name” “field definition”
X e Aggregate definitions are formatted as:
g "aggregate name" AGGREGATE ("field name list")
| e Fields will contain only atomic (single-valued) variables.
-i e Aggregates may be used so that a program can manipulate
b multiple fields in one statement when it makes sense to do
A 80, 4 N
- "table-expression” ii

N e Tables may be used implicitly in assignments or comparisons .
being separately named or defined. -

E-14

e e W ) g

w




R 2 A L AP I I T N R e . T

\»
-.:
N
o
)
> e A table expression is either a table name or a SELECT state-
ment specifying the contents of the implicit table.
“ “table name"”
! e Generally, this is just the name of a table.
¢ In a few statements, there is a syntax that allows a user to
y define a synonym and use 1t in the rest of that statement.
0o The intent of this option is to allow shorter where clauses
ﬁ that are easier to read. The format of the synonym refer-
.- ence is:
i - “existing table name” ( “synonya" )
" e The statements that allow this use are those that have the
M. where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.
A g
N "variable definition block” k
) e The content of the variable definition block is two columms: .
L variable names and variable descriptions.
i
. o Align variable names in a column that is indented 3 spaces
from the DEFINE VARIABLES line.
e Align variable definitions in a column as convenient; when a
«© structure element is defined, both the variable name and the
- variable definition should be indented three spaces from the
3 name and definition of the next higher level variable. J
|3 .
n e Three types of variables may be defined in this block:
atomic variables, arrays, and structured variables. ’ .
¥ .
:}' e Each element variable is described by a line:
.: “variable name” “variable definition”
E‘ e Each array variable is described by a line:
. “variable name" ("dimensions™) "variable definition” .
i -
. e Each structured variable is described by multiple lines, one .
& line per lowest level element, and one line for each named i
5 level of grouping/structure, with indentation levels used to .
A indicate the grouping. =
t
. e The names of subordinate elements of a structured variable R
3, are named in all lower case letters. _ .
.§ E-15 W
A N
o ;

1




o
X

.,!
-‘

s e The use of complex structured variables is not encouraged;

- one reasonable use for them 1is to receive the values of

3 AGGREGATES .

4 -
& E.8 Other Uses and Conventions

%o

%) Use of Special Characters in AERA PDL

o o Parentheses are used for grouping statements and setting off

¥ special parts of the comstructs.
e Semicolons are used as statement terminators.

e Colons are used to terminate labels.

g o Underscore 1is wused to separate words 1in multi-word

v identifiers.

¥ e The symbols '+','-','®#'  and '/' are used as arithmetic

. operators.

:ﬁ e The pound sign '#' is used as a comment delimiter, for

% beginning and end of each comment line.

a5

B o Commas are used as separators in lists of operands.

™ o Periods are used to separate fully qualified names.

oy |

N .;‘
; X Naming Conventions

¥
e ¢ Keyword identifiers use only uppercase letters and are

4 underlined. They are the only underlined identifiers in the

y PDL.

o e Table identifiers from the relational data base also use

e only uppercase letters.

) o AGGREGATE identifiers for combinations of fields use no

i) uppercase letters. )
g L
;i' o References to fields in a table, used in the normal course j1
$%y of reference in AERA PDL, will be fully qualified by :
-~ including the table name. i
<
2’1 :
c‘.‘;

B 3
-A’g E-16




.......................

Other Identifiers

, o Identifiers for constants, routines, labels, arrays, and
N hierarchically structured variables are all be named using
- word-initial capitals.

e For hierarchically structured variables, all of the sub-
ordinate elements within the structure use only lowercase

by - letters.
2 .
LQ e For hierarchically structured variables, all references to
A the subordinate elements in the structure will be in fully
qualified form using separate identifiers.
.; e Global data and shared local data can include both tables
: and parameters. The individual parameters are named using
X word-initial capitals.
D
_ Use of the Formal Constructs in AERA PDL Statements
A
X e Statements may use formal constructs or clear English
K~ descriptions to specify the intended test or action.
o
? e Any AFRA PDL statement 1is terminated by a semicolon,
including any English statement outside of a comment.
32 o Below the level of statement, some statements have a finer
A organization in terms of "phrases”, usually occupying a line
o per phrase and indented one level from the first line of the
- original statement.
; Statement Organization
sf e Indentation 1s wused to 1indicate statement grouping,
3 statement continuation, and levels of nesting.
: e Any statement may have a label starting in columm 1.
:“ e Continuation 1lines are indented three spaces from the
""C original line of the statement.

e Comments are used as needed, bracketed by the special
character '#',




1.

2.

3.

5.

7.

9.

10.

APPENDIX F
REFERENCES
U.S. Department of Transportation, Federal Aviation Administra-

tion, Advanced Automation Systems: System Level Specification,
FAA-ER-T30-005B, April 1983,

U.S. Department of Tramsportation, Federal Aviation Administra-
tion, National Airspace System Plan: Facilities, Equipment,
and Associated Development, April 1983,

William J. Swedish, Barbara C. Zimmerman, Audrey W. Lipps, J.
Glenn Steinbacher, “"Operational and Functional Description of
AERA 1.01," MTR-83W69, The MITRE Corporation, MclLean, Virginia,
September 1983.

U.S. Department of Transportation, Federal Aviation Administra-
tion, Air Traffic Control, Order 7110.65C, January 1982,

William J. Swedish, "Evolution of Advanced ATC Automation
Functions,” WP-83W1l49, The MITRE Corporation, McLean, Virginia,
March 1983.

U.S. Department of Tramsportation, Federal Aviation Administra-
tion, “National Airspace System (Configuration Management
Document: Automatic Tracking,” NAS-MD-321, August 1, 1982.

William P. Niedringhaus and Andrew D. Zeitlin, "Collision
Avoidance Algoritlams for Minimum TCAS II,” MTR-82W158, The
MITRE Corporation, Mclean, Virginia, March 1983.

Audrey W. Lipps, William J. Swedish, Barbara C. Zimmerman,
"Operational and Functional Discriptions of the AERA Packages,”
MIR-83W125, The MITRE Corporation, MclLean, Virginia, September
1983.

Gregory M. Hunter and Kenneth Steiglitz, “"Operations on Images
Using Quadtrees,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-1, No. 2, pp. 145-153, April
1979.

Hanan Samet, “An Algorithm for Converting Rasters to
Quadtrees,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-3, No. 1, pp. 93-95, January 1981.

..................




1l. Hanan Samet, "Region Representation: Quadtrees from Boundary
Codes,” Communications of the Association for Computi
Machinery, Vol. 23, No. 3, pp. 163-170, March 1980.

12, Charles R. Dyer et al., "Region Representation: Boundary Codes
from Quadtrees,” Communications of _the Association for
Computing Machinery, Vol. 23, No. 3, pp. 171-179, March 1980.

13. Glenmn C. Kinney, Glennis L. Bell, and Martin A. Ditmore,
-.j “Glossary of Common Terms in Air Traffic Control Operations,”
; WP-83W22, The MITRE Corporation, McLean, Virginia, March 1983.

<

-
.

BXRtx | D2

v &
Therts

]

| TR

F-2

}
A

¥
of
3

g ‘
D N N B R N g g e o A e e S 2 N S e Sty S
EY < N SR ~ - L a - S -




N

’

TP R L VR O’ §




